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Abstract

Motivation: Biomedical text mining is becoming increasingly important as the number of biomedical documents
rapidly grows. With the progress in natural language processing (NLP), extracting valuable information from bio-
medical literature has gained popularity among researchers, and deep learning has boosted the development of ef-
fective biomedical text mining models. However, directly applying the advancements in NLP to biomedical text min-
ing often yields unsatisfactory results due to a word distribution shift from general domain corpora to biomedical
corpora. In this article, we investigate how the recently introduced pre-trained language model BERT can be adapted
for biomedical corpora.

Results: We introduce BioBERT (Bidirectional Encoder Representations from Transformers for Biomedical Text
Mining), which is a domain-specific language representation model pre-trained on large-scale biomedical corpora.
With almost the same architecture across tasks, BioBERT largely outperforms BERT and previous state-of-the-art
models in a variety of biomedical text mining tasks when pre-trained on biomedical corpora. While BERT obtains
performance comparable to that of previous state-of-the-art models, BioBERT significantly outperforms them on the
following three representative biomedical text mining tasks: biomedical named entity recognition (0.62% F1 score
improvement), biomedical relation extraction (2.80% F1 score improvement) and biomedical question answering
(12.24% MRR improvement). Our analysis results show that pre-training BERT on biomedical corpora helps it to
understand complex biomedical texts.

Availability and implementation: We make the pre-trained weights of BioBERT freely available at https://github.
com/naver/biobert-pretrained, and the source code for fine-tuning BioBERT available at https://github.com/dmis-lab/
biobert.

Contact: kangj@korea.ac.kr

1 Introduction

The volume of biomedical literature continues to rapidly increase.
On average, more than 3000 new articles are published every day in
peer-reviewed journals, excluding pre-prints and technical reports
such as clinical trial reports in various archives. PubMed alone has a
total of 29M articles as of January 2019. Reports containing valu-
able information about new discoveries and new insights are con-
tinuously added to the already overwhelming amount of literature.
Consequently, there is increasingly more demand for accurate bio-
medical text mining tools for extracting information from the
literature.

Recent progress of biomedical text mining models was made
possible by the advancements of deep learning techniques used in
natural language processing (NLP). For instance, Long Short-Term
Memory (LSTM) and Conditional Random Field (CRF) have greatly
improved performance in biomedical named entity recognition
(NER) over the last few years (Giorgi and Bader, 2018; Habibi
et al., 2017; Wang et al., 2018; Yoon et al., 2019). Other deep learn-
ing based models have made improvements in biomedical text min-
ing tasks such as relation extraction (RE) (Bhasuran and Natarajan,
2018; Lim and Kang, 2018) and question answering (QA) (Wiese
et al., 2017).
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However, directly applying state-of-the-art NLP methodologies
to biomedical text mining has limitations. First, as recent word rep-
resentation models such as Word2Vec (Mikolov et al., 2013), ELMo
(Peters et al., 2018) and BERT (Devlin et al., 2019) are trained and
tested mainly on datasets containing general domain texts (e.g.
Wikipedia), it is difficult to estimate their performance on datasets
containing biomedical texts. Also, the word distributions of general
and biomedical corpora are quite different, which can often be a
problem for biomedical text mining models. As a result, recent mod-
els in biomedical text mining rely largely on adapted versions of
word representations (Habibi et al., 2017; Pyysalo et al., 2013).

In this study, we hypothesize that current state-of-the-art word
representation models such as BERT need to be trained on biomed-
ical corpora to be effective in biomedical text mining tasks.
Previously, Word2Vec, which is one of the most widely known con-
text independent word representation models, was trained on bio-
medical corpora which contain terms and expressions that are
usually not included in a general domain corpus (Pyysalo et al.,
2013). While ELMo and BERT have proven the effectiveness of con-
textualized word representations, they cannot obtain high perform-
ance on biomedical corpora because they are pre-trained on only
general domain corpora. As BERT achieves very strong results on
various NLP tasks while using almost the same structure across the
tasks, adapting BERT for the biomedical domain could potentially
benefit numerous biomedical NLP researches.

2 Approach

In this article, we introduce BioBERT, which is a pre-trained language
representation model for the biomedical domain. The overall process
of pre-training and fine-tuning BioBERT is illustrated in Figure 1. First,
we initialize BioBERT with weights from BERT, which was pre-
trained on general domain corpora (English Wikipedia and
BooksCorpus). Then, BioBERT is pre-trained on biomedical domain
corpora (PubMed abstracts and PMC full-text articles). To show the ef-
fectiveness of our approach in biomedical text mining, BioBERT is
fine-tuned and evaluated on three popular biomedical text mining tasks
(NER, RE and QA). We test various pre-training strategies with differ-
ent combinations and sizes of general domain corpora and biomedical
corpora, and analyze the effect of each corpus on pre-training. We also
provide in-depth analyses of BERT and BioBERT to show the necessity
of our pre-training strategies.

The contributions of our paper are as follows:

• BioBERT is the first domain-specific BERT based model pre-

trained on biomedical corpora for 23 days on eight NVIDIA

V100 GPUs.
• We show that pre-training BERT on biomedical corpora largely

improves its performance. BioBERT obtains higher F1 scores in

biomedical NER (0.62) and biomedical RE (2.80), and a higher

MRR score (12.24) in biomedical QA than the current state-of-

the-art models.

• Compared with most previous biomedical text mining models

that are mainly focused on a single task such as NER or QA, our

model BioBERT achieves state-of-the-art performance on various

biomedical text mining tasks, while requiring only minimal

architectural modifications.
• We make our pre-processed datasets, the pre-trained weights of

BioBERT and the source code for fine-tuning BioBERT publicly

available.

3 Materials and methods

BioBERT basically has the same structure as BERT. We briefly dis-
cuss the recently proposed BERT, and then we describe in detail the
pre-training and fine-tuning process of BioBERT.

3.1 BERT: bidirectional encoder representations from

transformers
Learning word representations from a large amount of unannotated
text is a long-established method. While previous models (e.g.
Word2Vec (Mikolov et al., 2013), GloVe (Pennington et al., 2014))
focused on learning context independent word representations, re-
cent works have focused on learning context dependent word repre-
sentations. For instance, ELMo (Peters et al., 2018) uses a
bidirectional language model, while CoVe (McCann et al., 2017)
uses machine translation to embed context information into word
representations.

BERT (Devlin et al., 2019) is a contextualized word representa-
tion model that is based on a masked language model and pre-
trained using bidirectional transformers (Vaswani et al., 2017). Due
to the nature of language modeling where future words cannot be
seen, previous language models were limited to a combination of
two unidirectional language models (i.e. left-to-right and right-to-
left). BERT uses a masked language model that predicts randomly
masked words in a sequence, and hence can be used for learning bi-
directional representations. Also, it obtains state-of-the-art perform-
ance on most NLP tasks, while requiring minimal task-specific
architectural modification. According to the authors of BERT,
incorporating information from bidirectional representations, rather
than unidirectional representations, is crucial for representing words
in natural language. We hypothesize that such bidirectional repre-
sentations are also critical in biomedical text mining as complex
relationships between biomedical terms often exist in a biomedical
corpus (Krallinger et al., 2017). Due to the space limitations, we
refer readers to Devlin et al. (2019) for a more detailed description
of BERT.

3.2 Pre-training BioBERT
As a general purpose language representation model, BERT was pre-
trained on English Wikipedia and BooksCorpus. However, biomed-
ical domain texts contain a considerable number of domain-specific

Fig. 1. Overview of the pre-training and fine-tuning of BioBERT
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proper nouns (e.g. BRCA1, c.248T>C) and terms (e.g. transcrip-
tional, antimicrobial), which are understood mostly by biomedical
researchers. As a result, NLP models designed for general purpose
language understanding often obtains poor performance in biomed-
ical text mining tasks. In this work, we pre-train BioBERT on
PubMed abstracts (PubMed) and PubMed Central full-text articles
(PMC). The text corpora used for pre-training of BioBERT are listed
in Table 1, and the tested combinations of text corpora are listed in
Table 2. For computational efficiency, whenever the Wiki þ Books
corpora were used for pre-training, we initialized BioBERT with the
pre-trained BERT model provided by Devlin et al. (2019). We define
BioBERT as a language representation model whose pre-training
corpora includes biomedical corpora (e.g. BioBERT (þ PubMed)).

For tokenization, BioBERT uses WordPiece tokenization (Wu
et al., 2016), which mitigates the out-of-vocabulary issue. With
WordPiece tokenization, any new words can be represented by fre-
quent subwords (e.g. Immunoglobulin ¼> I ##mm ##uno ##g ##lo
##bul ##in). We found that using cased vocabulary (not lower-
casing) results in slightly better performances in downstream tasks.
Although we could have constructed new WordPiece vocabulary
based on biomedical corpora, we used the original vocabulary of
BERTBASE for the following reasons: (i) compatibility of BioBERT
with BERT, which allows BERT pre-trained on general domain cor-
pora to be re-used, and makes it easier to interchangeably use exist-
ing models based on BERT and BioBERT and (ii) any new words
may still be represented and fine-tuned for the biomedical domain
using the original WordPiece vocabulary of BERT.

3.3 Fine-tuning BioBERT
With minimal architectural modification, BioBERT can be applied
to various downstream text mining tasks. We fine-tune BioBERT on
the following three representative biomedical text mining tasks:
NER, RE and QA.

Named entity recognition is one of the most fundamental bio-
medical text mining tasks, which involves recognizing numerous do-
main-specific proper nouns in a biomedical corpus. While most
previous works were built upon different combinations of LSTMs
and CRFs (Giorgi and Bader, 2018; Habibi et al., 2017; Wang et al.,
2018), BERT has a simple architecture based on bidirectional trans-
formers. BERT uses a single output layer based on the representa-
tions from its last layer to compute only token level BIO2
probabilities. Note that while previous works in biomedical NER
often used word embeddings trained on PubMed or PMC corpora
(Habibi et al., 2017; Yoon et al., 2019), BioBERT directly learns
WordPiece embeddings during pre-training and fine-tuning. For the
evaluation metrics of NER, we used entity level precision, recall and
F1 score.

Relation extraction is a task of classifying relations of named
entities in a biomedical corpus. We utilized the sentence classifier of
the original version of BERT, which uses a [CLS] token for the clas-
sification of relations. Sentence classification is performed using a
single output layer based on a [CLS] token representation from
BERT. We anonymized target named entities in a sentence using
pre-defined tags such as @GENE$ or @DISEASE$. For instance, a
sentence with two target entities (gene and disease in this case) is
represented as “Serine at position 986 of @GENE$ may be an inde-
pendent genetic predictor of angiographic @DISEASE$.” The preci-
sion, recall and F1 scores on the RE task are reported.

Question answering is a task of answering questions posed in
natural language given related passages. To fine-tune BioBERT for
QA, we used the same BERT architecture used for SQuAD

(Rajpurkar et al., 2016). We used the BioASQ factoid datasets be-
cause their format is similar to that of SQuAD. Token level proba-
bilities for the start/end location of answer phrases are computed
using a single output layer. However, we observed that about 30%
of the BioASQ factoid questions were unanswerable in an extractive
QA setting as the exact answers did not appear in the given pas-
sages. Like Wiese et al. (2017), we excluded the samples with un-
answerable questions from the training sets. Also, we used the same
pre-training process of Wiese et al. (2017), which uses SQuAD, and
it largely improved the performance of both BERT and BioBERT.
We used the following evaluation metrics from BioASQ: strict accur-
acy, lenient accuracy and mean reciprocal rank.

4 Results

4.1 Datasets
The statistics of biomedical NER datasets are listed in Table 3. We
used the pre-processed versions of all the NER datasets provided by
Wang et al. (2018) except the 2010 i2b2/VA, JNLPBA and Species-
800 datasets. The pre-processed NCBI Disease dataset has fewer
annotations than the original dataset due to the removal of duplicate
articles from its training set. We used the CoNLL format (https://
github.com/spyysalo/standoff2conll) for pre-processing the 2010
i2b2/VA and JNLPBA datasets. The Species-800 dataset was pre-
processed and split based on the dataset of Pyysalo (https://github.
com/spyysalo/s800). We did not use alternate annotations for the
BC2GM dataset, and all NER evaluations are based on entity-level
exact matches. Note that although there are several other recently
introduced high quality biomedical NER datasets (Mohan and Li,
2019), we use datasets that are frequently used by many biomedical
NLP researchers, which makes it much easier to compare our work
with theirs. The RE datasets contain gene–disease relations and pro-
tein–chemical relations (Table 4). Pre-processed GAD and EU-ADR
datasets are available with our provided codes. For the
CHEMPROT dataset, we used the same pre-processing procedure
described in Lim and Kang (2018). We used the BioASQ factoid
datasets, which can be converted into the same format as the
SQuAD dataset (Table 5). We used full abstracts (PMIDs) and
related questions and answers provided by the BioASQ organizers.
We have made the pre-processed BioASQ datasets publicly avail-
able. For all the datasets, we used the same dataset splits used in pre-
vious works (Lim and Kang, 2018; Tsatsaronis et al., 2015; Wang
et al., 2018) for a fair evaluation; however, the splits of LINAAEUS
and Species-800 could not be found from Giorgi and Bader (2018)
and may be different. Like previous work (Bhasuran and Natarajan,
2018), we reported the performance of 10-fold cross-validation on
datasets that do not have separate test sets (e.g. GAD, EU-ADR).

We compare BERT and BioBERT with the current state-of-the-
art models and report their scores. Note that the state-of-the-art
models each have a different architecture and training procedure.
For instance, the state-of-the-art model by Yoon et al. (2019) trained
on the JNLPBA dataset is based on multiple Bi-LSTM CRF models
with character level CNNs, while the state-of-the-art model by
Giorgi and Bader (2018) trained on the LINNAEUS dataset uses a
Bi-LSTM CRF model with character level LSTMs and is additional-
ly trained on silver-standard datasets. On the other hand, BERT and

Table 1. List of text corpora used for BioBERT

Corpus Number of words Domain

English Wikipedia 2.5B General

BooksCorpus 0.8B General

PubMed Abstracts 4.5B Biomedical

PMC Full-text articles 13.5B Biomedical

Table 2. Pre-training BioBERT on different combinations of the fol-

lowing text corpora: English Wikipedia (Wiki), BooksCorpus

(Books), PubMed abstracts (PubMed) and PMC full-text articles

(PMC)

Model Corpus combination

BERT (Devlin et al., 2019) Wiki þ Books

BioBERT (þPubMed) Wiki þ Books þ PubMed

BioBERT (þPMC) Wiki þ Books þ PMC

BioBERT (þPubMed þ PMC) Wiki þ Books þ PubMed þ PMC
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BioBERT have exactly the same structure, and use only the gold
standard datasets and not any additional datasets.

4.2 Experimental setups
We used the BERTBASE model pre-trained on English Wikipedia and
BooksCorpus for 1M steps. BioBERT v1.0 (þ PubMed þ PMC) is
the version of BioBERT (þ PubMed þ PMC) trained for 470 K
steps. When using both the PubMed and PMC corpora, we found
that 200K and 270K pre-training steps were optimal for PubMed
and PMC, respectively. We also used the ablated versions of
BioBERT v1.0, which were pre-trained on only PubMed for 200K
steps (BioBERT v1.0 (þ PubMed)) and PMC for 270K steps
(BioBERT v1.0 (þ PMC)). After our initial release of BioBERT v1.0,
we pre-trained BioBERT on PubMed for 1M steps, and we refer to
this version as BioBERT v1.1 (þ PubMed). Other hyper-parameters
such as batch size and learning rate scheduling for pre-training
BioBERT are the same as those for pre-training BERT unless stated
otherwise.

We pre-trained BioBERT using Naver Smart Machine Learning
(NSML) (Sung et al., 2017), which is utilized for large-scale experi-
ments that need to be run on several GPUs. We used eight NVIDIA
V100 (32GB) GPUs for the pre-training. The maximum sequence
length was fixed to 512 and the mini-batch size was set to 192,
resulting in 98 304 words per iteration. It takes more than 10 days
to pre-train BioBERT v1.0 (þ PubMed þ PMC) nearly 23 days for
BioBERT v1.1 (þ PubMed) in this setting. Despite our best efforts

to use BERTLARGE, we used only BERTBASE due to the computational
complexity of BERTLARGE.

We used a single NVIDIA Titan Xp (12GB) GPU to fine-tune
BioBERT on each task. Note that the fine-tuning process is more
computationally efficient than pre-training BioBERT. For fine-
tuning, a batch size of 10, 16, 32 or 64 was selected, and a learning
rate of 5e�5, 3e�5 or 1e�5 was selected. Fine-tuning BioBERT on
QA and RE tasks took less than an hour as the size of the training
data is much smaller than that of the training data used by Devlin
et al. (2019). On the other hand, it takes more than 20 epochs for
BioBERT to reach its highest performance on the NER datasets.

4.3 Experimental results
The results of NER are shown in Table 6. First, we observe that
BERT, which was pre-trained on only the general domain corpus is
quite effective, but the micro averaged F1 score of BERT was lower
(2.01 lower) than that of the state-of-the-art models. On the other
hand, BioBERT achieves higher scores than BERT on all the data-
sets. BioBERT outperformed the state-of-the-art models on six out
of nine datasets, and BioBERT v1.1 (þ PubMed) outperformed the
state-of-the-art models by 0.62 in terms of micro averaged F1 score.
The relatively low scores on the LINNAEUS dataset can be attrib-
uted to the following: (i) the lack of a silver-standard dataset for
training previous state-of-the-art models and (ii) different training/
test set splits used in previous work (Giorgi and Bader, 2018), which
were unavailable.

The RE results of each model are shown in Table 7. BERT
achieved better performance than the state-of-the-art model on the
CHEMPROT dataset, which demonstrates its effectiveness in RE.
On average (micro), BioBERT v1.0 (þ PubMed) obtained a higher
F1 score (2.80 higher) than the state-of-the-art models. Also,
BioBERT achieved the highest F1 scores on 2 out of 3 biomedical
datasets.

The QA results are shown in Table 8. We micro averaged the
best scores of the state-of-the-art models from each batch. BERT
obtained a higher micro averaged MRR score (7.0 higher) than the
state-of-the-art models. All versions of BioBERT significantly out-
performed BERT and the state-of-the-art models, and in particular,
BioBERT v1.1 (þ PubMed) obtained a strict accuracy of 38.77, a le-
nient accuracy of 53.81 and a mean reciprocal rank score of 44.77,
all of which were micro averaged. On all the biomedical QA data-
sets, BioBERT achieved new state-of-the-art performance in terms
of MRR.

5 Discussion

We used additional corpora of different sizes for pre-training and
investigated their effect on performance. For BioBERT v1.0 (þ
PubMed), we set the number of pre-training steps to 200K and var-
ied the size of the PubMed corpus. Figure 2(a) shows that the per-
formance of BioBERT v1.0 (þ PubMed) on three NER datasets
(NCBI Disease, BC2GM, BC4CHEMD) changes in relation to the
size of the PubMed corpus. Pre-training on 1 billion words is quite
effective, and the performance on each dataset mostly improves until
4.5 billion words. We also saved the pre-trained weights from
BioBERT v1.0 (þ PubMed) at different pre-training steps to meas-
ure how the number of pre-training steps affects its performance on
fine-tuning tasks. Figure 2(b) shows the performance changes of
BioBERT v1.0 (þ PubMed) on the same three NER datasets in rela-
tion to the number of pre-training steps. The results clearly show
that the performance on each dataset improves as the number of
pre-training steps increases. Finally, Figure 2(c) shows the absolute
performance improvements of BioBERT v1.0 (þ PubMed þ PMC)
over BERT on all 15 datasets. F1 scores were used for NER/RE, and
MRR scores were used for QA. BioBERT significantly improves per-
formance on most of the datasets.

As shown in Table 9, we sampled predictions from BERT and
BioBERT v1.1 (þPubMed) to see the effect of pre-training on down-
stream tasks. BioBERT can recognize biomedical named entities
that BERT cannot and can find the exact boundaries of named

Table 3. Statistics of the biomedical named entity recognition

datasets

Dataset Entity type Number of

annotations

NCBI Disease (Do�gan et al., 2014) Disease 6881

2010 i2b2/VA (Uzuner et al., 2011) Disease 19 665

BC5CDR (Li et al., 2016) Disease 12 694

BC5CDR (Li et al., 2016) Drug/Chem. 15 411

BC4CHEMD (Krallinger et al., 2015) Drug/Chem. 79 842

BC2GM (Smith et al., 2008) Gene/Protein 20 703

JNLPBA (Kim et al., 2004) Gene/Protein 35 460

LINNAEUS (Gerner et al., 2010) Species 4077

Species-800 (Pafilis et al., 2013) Species 3708

Note: The number of annotations from Habibi et al. (2017) and Zhu et al.

(2018) is provided.

Table 4. Statistics of the biomedical relation extraction datasets

Dataset Entity type Number of

relations

GAD (Bravo et al., 2015) Gene–disease 5330

EU-ADR (Van Mulligen et al., 2012) Gene–disease 355

CHEMPROT (Krallinger et al., 2017) Protein–chemical 10 031

Note: For the CHEMPROT dataset, the number of relations in the train-

ing, validation and test sets was summed.

Table 5. Statistics of biomedical question answering datasets

Dataset Number

of train

Number

of test

BioASQ 4b-factoid (Tsatsaronis et al., 2015) 327 161

BioASQ 5b-factoid (Tsatsaronis et al., 2015) 486 150

BioASQ 6b-factoid (Tsatsaronis et al., 2015) 618 161
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entities. While BERT often gives incorrect answers to simple bio-
medical questions, BioBERT provides correct answers to such ques-
tions. Also, BioBERT can provide longer named entities as answers.

6 Conclusion

In this article, we introduced BioBERT, which is a pre-trained lan-
guage representation model for biomedical text mining. We showed
that pre-training BERT on biomedical corpora is crucial in applying
it to the biomedical domain. Requiring minimal task-specific

architectural modification, BioBERT outperforms previous models
on biomedical text mining tasks such as NER, RE and QA.

The pre-released version of BioBERT (January 2019) has already
been shown to be very effective in many biomedical text mining tasks
such as NER for clinical notes (Alsentzer et al., 2019), human
phenotype-gene RE (Sousa et al., 2019) and clinical temporal RE (Lin
et al., 2019). The following updated versions of BioBERT will be avail-
able to the bioNLP community: (i) BioBERTBASE and BioBERTLARGE

trained on only PubMed abstracts without initialization from the exist-
ing BERT model and (ii) BioBERTBASE and BioBERTLARGE trained on
domain-specific vocabulary based on WordPiece.

Table 6. Test results in biomedical named entity recognition

BERT BioBERT v1.0 BioBERT v1.1

Type Datasets Metrics SOTA (Wiki þ Books) (þ PubMed) (þ PMC) (þ PubMed þ PMC) (þ PubMed)

Disease NCBI disease P 88.30 84.12 86.76 86.16 89.04 88.22

R 89.00 87.19 88.02 89.48 89.69 91.25

F 88.60 85.63 87.38 87.79 89.36 89.71

2010 i2b2/VA P 87.44 84.04 85.37 85.55 87.50 86.93

R 86.25 84.08 85.64 85.72 85.44 86.53

F 86.84 84.06 85.51 85.64 86.46 86.73

BC5CDR P 89.61 81.97 85.80 84.67 85.86 86.47

R 83.09 82.48 86.60 85.87 87.27 87.84

F 86.23 82.41 86.20 85.27 86.56 87.15

Drug/chem. BC5CDR P 94.26 90.94 92.52 92.46 93.27 93.68

R 92.38 91.38 92.76 92.63 93.61 93.26

F 93.31 91.16 92.64 92.54 93.44 93.47

BC4CHEMD P 92.29 91.19 91.77 91.65 92.23 92.80

R 90.01 88.92 90.77 90.30 90.61 91.92

F 91.14 90.04 91.26 90.97 91.41 92.36

Gene/protein BC2GM P 81.81 81.17 81.72 82.86 85.16 84.32

R 81.57 82.42 83.38 84.21 83.65 85.12

F 81.69 81.79 82.54 83.53 84.40 84.72

JNLPBA P 74.43 69.57 71.11 71.17 72.68 72.24

R 83.22 81.20 83.11 82.76 83.21 83.56

F 78.58 74.94 76.65 76.53 77.59 77.49

Species LINNAEUS P 92.80 91.17 91.83 91.62 93.84 90.77

R 94.29 84.30 84.72 85.48 86.11 85.83

F 93.54 87.60 88.13 88.45 89.81 88.24

Species-800 P 74.34 69.35 70.60 71.54 72.84 72.80

R 75.96 74.05 75.75 74.71 77.97 75.36

F 74.98 71.63 73.08 73.09 75.31 74.06

Notes: Precision (P), Recall (R) and F1 (F) scores on each dataset are reported. The best scores are in bold, and the second best scores are underlined. We list

the scores of the state-of-the-art (SOTA) models on different datasets as follows: scores of Xu et al. (2019) on NCBI Disease, scores of Sachan et al. (2018) on

BC2GM, scores of Zhu et al. (2018) (single model) on 2010 i2b2/VA, scores of Lou et al. (2017) on BC5CDR-disease, scores of Luo et al. (2018) on

BC4CHEMD, scores of Yoon et al. (2019) on BC5CDR-chemical and JNLPBA and scores of Giorgi and Bader (2018) on LINNAEUS and Species-800.

Table 7. Biomedical relation extraction test results

BERT BioBERT v1.0 BioBERT v1.1

Relation Datasets Metrics SOTA (Wiki þ Books) (þ PubMed) (þ PMC) (þ PubMed þ PMC) (þ PubMed)

Gene–disease GAD P 79.21 74.28 76.43 75.20 75.95 77.32

R 89.25 85.11 87.65 86.15 88.08 82.68

F 83.93 79.29 81.61 80.24 81.52 79.83

EU-ADR P 76.43 75.45 78.04 81.05 80.92 77.86

R 98.01 96.55 93.86 93.90 90.81 83.55

F 85.34 84.62 84.44 86.51 84.83 79.74

Protein–chemical CHEMPROT P 74.80 76.02 76.05 77.46 75.20 77.02

R 56.00 71.60 74.33 72.94 75.09 75.90

F 64.10 73.74 75.18 75.13 75.14 76.46

Notes: Precision (P), Recall (R) and F1 (F) scores on each dataset are reported. The best scores are in bold, and the second best scores are underlined. The scores

on GAD and EU-ADR were obtained from Bhasuran and Natarajan (2018), and the scores on CHEMPROT were obtained from Lim and Kang (2018).
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(a) (b) (c)

Fig. 2. (a) Effects of varying the size of the PubMed corpus for pre-training. (b) NER performance of BioBERT at different checkpoints. (c) Performance improvement of

BioBERT v1.0 (þ PubMed þ PMC) over BERT

Table 8. Biomedical question answering test results

BERT BioBERT v1.0 BioBERT v1.1

Datasets Metrics SOTA (Wiki þ Books) (þ PubMed) (þ PMC) (þ PubMed þ PMC) (þ PubMed)

BioASQ 4b S 20.01 27.33 25.47 26.09 28.57 27.95

L 28.81 44.72 44.72 42.24 47.82 44.10

M 23.52 33.77 33.28 32.42 35.17 34.72

BioASQ 5b S 41.33 39.33 41.33 42.00 44.00 46.00

L 56.67 52.67 55.33 54.67 56.67 60.00

M 47.24 44.27 46.73 46.93 49.38 51.64

BioASQ 6b S 24.22 33.54 43.48 41.61 40.37 42.86

L 37.89 51.55 55.90 55.28 57.77 57.77

M 27.84 40.88 48.11 47.02 47.48 48.43

Notes: Strict Accuracy (S), Lenient Accuracy (L) and Mean Reciprocal Rank (M) scores on each dataset are reported. The best scores are in bold, and the

second best scores are underlined. The best BioASQ 4b/5b/6b scores were obtained from the BioASQ leaderboard (http://participants-area.bioasq.org).

Table 9. Prediction samples from BERT and BioBERT on NER and QA datasets

Task Dataset Model Sample

NER NCBI disease BERT WT1 missense mutations, associated with male pseudohermaphroditism in Denys–Drash syn-

drome, fail to . . .

BioBERT WT1 missense mutations, associated with male pseudohermaphroditism in Denys–Drash syn-

drome, fail to . . .

BC5CDR (Drug/Chem.) BERT . . . a case of oral penicillin anaphylaxis is described, and the terminology . . .

BioBERT . . . a case of oral penicillin anaphylaxis is described, and the terminology . . .

BC2GM BERT Like the DMA, but unlike all other mammalian class II A genes, the zebrafish gene codes for

two cysteine residues . . .

BioBERT Like the DMA, but unlike all other mammalian class II A genes, the zebrafish gene codes for

two cysteine residues . . .

QA BioASQ 6b-factoid Q: Which type of urinary incontinence is diagnosed with the Q tip test?

BERT A total of 25 women affected by clinical stress urinary incontinence (SUI) were enrolled.

After undergoing (. . .) Q-tip test, . . .

BioBERT A total of 25 women affected by clinical stress urinary incontinence (SUI) were enrolled.

After undergoing (. . .) Q-tip test, . . .

Q: Which bacteria causes erythrasma?

BERT Corynebacterium minutissimum is the bacteria that leads to cutaneous eruptions of eryth-

rasma . . .

BioBERT Corynebacterium minutissimum is the bacteria that leads to cutaneous eruptions of eryth-

rasma . . .

Note: Predicted named entities for NER and predicted answers for QA are in bold.
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