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Graph representation learning in 
biomedicine and healthcare

Michelle M. Li1,2, Kexin Huang3 and Marinka Zitnik    2,4,5 

Networks—or graphs—are universal descriptors of systems of interacting 
elements. In biomedicine and healthcare, they can represent, for example, 
molecular interactions, signalling pathways, disease co-morbidities or 
healthcare systems. In this Perspective, we posit that representation 
learning can realize principles of network medicine, discuss successes 
and current limitations of the use of representation learning on graphs 
in biomedicine and healthcare, and outline algorithmic strategies that 
leverage the topology of graphs to embed them into compact vectorial 
spaces. We argue that graph representation learning will keep pushing 
forward machine learning for biomedicine and healthcare applications, 
including the identification of genetic variants underlying complex traits, 
the disentanglement of single-cell behaviours and their effects on health, 
the assistance of patients in diagnosis and treatment, and the development 
of safe and effective medicines.

Networks are pervasive in biology and medicine. They can represent 
molecular interaction maps or population-scale social and health inter-
actions, for example. Because of the multitude of biological entities 
and associations that networks can describe, graph representations 
of biological organization and biomedical knowledge are prevalent. 
For instance, edges in a regulatory network can indicate activating 
and inhibitory relationships between genes1; edges between genes and 
diseases can indicate genes that are ‘upregulated by’, ‘downregulated 
by’ or ‘associated with’ a disease2; and edges in a knowledge network 
built from electronic health records (EHRs) can indicate co-occurrences 
of medical codes across patients3–5. The ability to model biomedical 
discoveries and even overlay patient information in a unified data rep-
resentation has driven the development of deep learning for networks. 
In fact, the data diversity and multimodality in networks not only boost 
the performance of predictive deep learning models, they enable their 
broad generalization to settings not seen during training6 and improve 
model interpretability7,8. However, networks can give rise to a bewilder-
ing degree of complexity that can only be fully understood through a 
holistic and integrated view9–11.

Fortunately, deep learning on graphs is rooted on organizing 
principles identified in the past two decades in systems biology and 
medicine12–15. These principles link network structure to molecular 

phenotypes, biological functions or disease states. Thus, we argue 
that they provide a conceptual grounding that explains the successes 
of representation learning on graphs—that is, of machine-learning 
techniques for the generation of optimized mathematical representa-
tions of data structured as graphs—and that informs its future devel-
opments. For instance, as defined by the local hypothesis, interacting 
entities are typically more similar than non-interacting entities13. The 
local hypothesis hence implicates that, in protein interaction net-
works, mutations in interacting proteins often lead to similar diseases13. 
According to the disease-module hypothesis13, cellular components 
(such as genes, proteins or metabolites associated with a specific dis-
ease) tend to cluster in the same network neighbourhood16. According 
to the shared-components hypothesis, diseases driven by perturba-
tions of the same components (or of closely associated components) 
are phenotypically similar and have similar responses when targeted 
by a therapeutic. Furthermore, essential genes are typically found in 
hubs of a molecular network, whereas non-essential genes (including 
genes associated with disease) are located at the network’s periphery13. 
Moreover, the parsimony principle dictates that the shortest paths in 
a molecular network involving the fewest disease-associated compo-
nents correlate with causal molecular pathways13. These hypotheses 
and principles continue to drive discoveries.
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Graph representation learning
Graph theoretic techniques have fuelled many discoveries, from uncov-
ering relationships between diseases43–46 to repurposing drugs6,47,48. 
Algorithmic innovations, such as random walks49–51, kernels52 and net-
work propagation53, have played a role in capturing structural informa-
tion from networks. Feature engineering—the process of extracting 
predetermined features from a network to suit a user-specified 
machine-learning method54—is also a common approach applied to 
machine learning on networks. It involves the hard-coding of network 
features (for example, higher order structures, network motifs, degree 
counts and common neighbour statistics) and the feeding of the engi-
neered feature vectors into a machine-learning model. However, hand-
crafting optimally predictive features across diverse types of networks 
and applications can be challenging18.

For these reasons, graph representation learning has emerged as 
a leading machine-learning approach for networks. However, its devel-
opment is challenging because graphs comprise many kinds of entity 
(nodes) and various types of interaction (edges) among the entities, 
can be topographically complex and have no fixed node ordering or 
reference points. Classic deep-learning methods cannot handle such 
diverse structural properties and rich interactions (which are pre-
dominant in biomedical networks) because the methods are designed 
for fixed-size grids (such as matrices of pixels in images, and tabular 
datasets) or optimized for text and sequences. Akin to how deep learn-
ing on images and sequences has revolutionized image analysis and 
natural language processing, we anticipate that graph representation 
learning will transform the study of complex systems.

In graph representation learning, learned vector representations 
(or embeddings) of graph elements are generated such that they 
capture the structure and semantics of the network along with any 
downstream supervised task (Fig. 1). There is a wide range of meth-
ods for graph representation learning, including manifold learning, 
TDA, GNNs and generative graph models (Fig. 2). Box 1 describes the 
elements of a graph and outlines the main tasks of machine learning 
on graphs. In what follows, we outline the main methods of graph 
representation learning (additional techniques are outlined in Sup-
plementary Note 4).

We argue that representation learning can realize principles of 
network medicine. The core idea is to learn how to represent nodes 
(or larger graph structures) in a network as points in a low-dimensional 
space, where the geometry of the space is optimized to reflect the 
structure of interactions between nodes. Concretely, representation 
learning specifies nonlinear transformation functions that map nodes 
to points in a compact vectorial space (or embeddings). Such func-
tions are optimized to embed the input network, so that nodes with 
similar network neighbourhoods are embedded closely in the vecto-
rial space (and algebraic operations performed in this learned space 
reflect the network’s topology). Hence, nodes in the same positional 
regions should have similar embeddings, owing to the local hypoth-
esis (for example, highly similar pairs of protein embeddings suggest 
similar phenotypic consequences). Additionally, node embeddings 
can capture whether the nodes lie within a hub on the basis of their 
degree (that is, the number of connected nodes), which is an important 
aspect of local neighbourhood (for instance, strongly clustered gene 
embeddings indicate essential housekeeping roles). Because of the 
shared-components hypothesis, two nodes with significantly over-
lapping sets of neighbours should have similar embeddings, owing to 
shared message passing (for example, highly similar disease embed-
dings imply shared disease-associated cellular components).

In this Perspective, we survey the capabilities of graph represen-
tation learning and highlight notable applications in biomedicine 
and healthcare. Some aspects of graph representation learning have 
been covered extensively in the literature: deep learning on structured 
data17,18; graph neural networks19–21 (GNNs); representation learning for 
homogeneous and heterogeneous graphs22–24, solely heterogeneous 
graphs25 and dynamic graphs26; data fusion27; network propagation28; 
topological data analysis29 (TDA); and the creation of biomedical net-
works9,29–32. Biomedically focused review articles have surveyed the use 
of GNNs for molecular generation33,34, single-cell biology35, drug discov-
ery and drug repurposing36–40, and histopathology41. Other articles have 
focused on GNNs, excluding many approaches in graph representation 
learning, or have not considered patient-centric methods42. Here, we 
overview the uses of graph representation learning across a range of 
areas in biomedicine and healthcare.
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Fig. 1 | Representation learning for networks in biomedicine and healthcare. 
For any network, graph representation learning transforms the network to 
extract patterns, make predictions or gain insights, and leverages these to 
produce compact vectorial representations (denoted by the tube-like shapes) 
that can be optimized for the downstream task. The right-most schematic shows 

a local two-hop neighbourhood around node u; it illustrates how information 
(or ‘neural messages’) can be propagated along edges in the neighbourhood, 
transformed and then aggregated at node u to arrive at the embedding of u. The 
shaded concentric rings englobe the sets of one-hop neighbourhood and two-
hop neighbourhood of u.
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Shallow graph embeddings
Shallow-embedding methods optimize a compact vectorial space such 
that points close in the graph are mapped to nearby points in the 
embedding space, measured by a predefined distance function or an 
outer product. These methods are transductive where the encoder 
function is a simple embedding lookup (Fig. 2). Concretely, t methods 
involve three steps: the mapping to an embedding space (given a pair 
of nodes u and v in a graph and a learnable function f that maps nodes 
to embeddings, the mapping specifies hu and hv); the definition of 
graph similarity (fn(u,v); for example, measured by the distance between 
u and v in the graph) and of embedding similarity (fz(hv,hv); for example, 
a Euclidean distance function or pairwise dot-product); and the com-
putation of a loss function (ℒ(fn (u, v) , fz(hu,hv)), which quantifies how 
the resulting embeddings preserve the desired input-graph similarity). 
Then an optimization procedure to minimize the loss ℒ(fn(u, v), fz(hu,hv)) 
is applied. The resulting f serves as a shallow lookup of embeddings 
that considers the graph structure only in the loss function.

Shallow embedding methods vary according to various definitions 
of similarities. For example, the shortest path length between nodes 
is often used as the network similarity, and the dot-product as the 
embedding similarity. Similarity can also be defined as co-occurrence 
in a series of random walks of length k (ref. 55). Unsupervised techniques 
that predict which node belongs to the walk, such as Skip-gram56 (an 
unsupervised learning technique that identifies the nearby nodes, 

or context, of any given node to learn its most related nodes), are 
then applied on the walks to generate embeddings. Supervised tech-
niques57,58, such as Node2vec57 (a semi-supervised learning technique 
that combines depth-first search and breadth-first search to capture 
a node’s network neighbourhood), have been used similarly. In het-
erogeneous graphs, information on the semantic meaning of edges 
(that is, relation types) can be important. Knowledge graph methods 
expand similarity measures to consider relation types59–64. Once shal-
low embedding models are trained, the resulting embeddings can be 
fed into separate models optimized for downstream analyses, such as 
classification and regression.

Graph neural networks
GNNs are a class of neural networks designed for graph-structured 
datasets (Fig. 2). They learn compact representations of graph ele-
ments, their attributes and supervised labels, if any. A typical GNN 
consists of a series of propagation layers65, where layer l carries out 
three operations: the passing of neural messages (the GNN computes 

a message m(l)
u,v = MSG (h

(l−1)
u ,h(l−1)v ) for linked nodes u, v on the basis 

of their embeddings from the previous layer h(l−1)u  and h(l−1)v ); the 

aggregation of neighbourhoods (the messages between node u and

 its neighbours 𝒩𝒩u are aggregated as m̂(l)
u = AGG(m(l)

u,v|v ∈ 𝒩𝒩u)); and the 
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Fig. 2 | Algorithmic paradigms in graph representation learning. a, Methods 
for shallow network embedding generate a dictionary of representations hu for 
every node u that summarize graph topology surrounding every node in the 
graph. This is achieved by learning a function fz that maps nodes into an 
embedding space such that nodes with similar graph neighbourhoods measured 
by function fn get embedded closely. An independent decoder can optimize 
learned embeddings for downstream tasks, such as the prediction of the 
property of a node or a link. Example methods include DeepWalk55, Node2vec57), 
LINE58 and Metapath2vec59, which differ in how they define the similarity function 
fn via graph-traversal techniques (unbiased, biased or typed random walks). b, In 

contrast with methods for shallow network embedding, GNNs can generate 
representations for any graph element by capturing both the network structure, 
the attributes, and node metadata. The embeddings are generated through a 
series of nonlinear transformations (that is, message-passing layers; Lk denotes 
transformations at layer k) that iteratively aggregate information from 
neighbouring nodes at the target node u. GNN models can be optimized for 
performance on a variety of downstream tasks. Examples of GNN methods 
include GCNs (an architecture for simple graphs with multiple message-passing 
layers66), GIN (an architecture that is probably the most expressive among the 

class of GNNs67), GAT (an architecture that stacks layers in which nodes are able to 
up-weight and down-weight other nodes in their neighbourhoods71) and JK-Net  
(a jumping-knowledge network that flexibly leverages, for each node, 
neighbourhoods of different size to enable better representations215.  
c, Generative graph models optimize a latent distribution (Z) to capture the 
structure and properties of input graphs (G). The models use the optimized 
distribution to generate new graphs (Ĝ) predicted to have the same desirable 
properties as input graphs (for example, a generated graph can represent a 
molecular graph of a drug candidate). Examples of these methods include GCPN 
(a graph convolutional policy network that produces molecular graphs with 
desired properties such as drug likeness and synthetic accessibility, while 
obeying physical laws such as chemical valency98), JT-VAE (a variational 
autoencoder that generates molecular graphs in two phases, by first generating a 
tree-structured scaffold over chemical substructures, and then combining them 
into a molecule with a message-passing network93) and GraphRNN (a deep 
autoregressive model that learns to generate graphs by training on a set of graphs 
and decomposing the graph-generation process into a sequence of node and 
edge formations99. Supplementary Fig. 1 and Supplementary Note 4 outline other 
representation-learning techniques.

http://www.nature.com/natbiomedeng
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updating of representations. A nonlinear transformation is applied to 
update node embeddings as h(l)u = UPD(m̂(l)

u ,h
(l−1)
u ) using the aggregated 

message and the embedding from the previous layer. In contrast to 
shallow embeddings, GNNs can capture higher order and nonlinear 
patterns through multi-hop propagation within several layers of neu-
ral message passing. Additionally, GNNs can optimize supervised sig-
nals and the graph structure simultaneously, whereas a shallow 
embedding method requires a two-stage approach to achieve the same.

A myriad of GNN architectures define different messages, aggre-
gation and update schemes to derive deep graph embeddings66–70. For 
example, in refs. 71,72–75, the researchers assigned importance scores for 
nodes during neighbourhood aggregation such that more important 
nodes played a larger effect in the embeddings. In refs. 76,77, the ability 
of GNNs to capture structural information of a graph was improved by 
imposing structural priors, such as a higher order adjacency matrix. 
Graph-pooling techniques78 learn abstract topological structures. 
And GNNs designed for molecules79,80 inject physics-based scores and 
domain knowledge into propagation layers.

As biomedical networks can be large and multimodal, special 
consideration is needed to scale GNNs to large and heterogeneous 
networks. To this end, refs. 81,82 developed sampling strategies to intelli-
gently select small subsets of the whole local network neighbourhoods, 
and used them to train GNN models. To tackle heterogeneous relations, 
in refs. 72,83,84 aggregation transformations were designed to fuse diverse 
types of relations and attributes. Recent architectures have leveraged 
dynamic message passing72,85,86 to deal with evolving and time-varying 

graphs, as well as few-shot learning87 or self-supervised strategies88,89 
to deal with graphs that are poorly annotated and that have limited 
information about labels.

Generative graph models
Generative graph models generate new structures of nodes and edges 
(and even entire graphs) that are likely to have desired properties, such 
as novel molecules with acceptable toxicity profiles (Fig. 2). Tradition-
ally, network science models can generate graphs using deterministic 
or probabilistic rules. For instance, starting from an empty graph, the 
Erdös–Rényi model90 iteratively adds random edges according to a 
predefined probability. The Barabási–Albert model91 grows a graph 
by adding nodes and edges such that the degree of the resulting graph 
has a power-law distribution, which is often observed in real-world 
networks. The configuration model92 adds edges on the basis of prede-
fined node degree sequences to generate graphs with arbitrary degree 
distributions. Although they are powerful as random graph generators, 
such models cannot optimize graph structures according to proper-
ties of interest.

Deep generative models address the challenge by estimating 
distributional graph properties on the basis of a dataset of graphs 𝒢𝒢 
and by inferring graph structures using such optimized distributions. 
A generative graph model first learns a latent distribution P(Z|𝒢𝒢) that 
characterizes the input graph set 𝒢𝒢. Then, conditioned on this distri-
bution, it decodes a new graph (that is, it generates a new graph Ĝ). 
There are different ways to encode the input graphs and to learn the 

Box 1

Fundamentals of graph representation learning
Elements of graphs
A graph G = (𝒱𝒱, 𝒱) consists of a set of nodes 𝒱𝒱 that are connected  
by a set of edges 𝒱. A homogeneous graph has only one type  
of node and one type of edge, whereas a heterogeneous graph 
consists of nodes of different type connected by diverse types of 
edge. Each node in the graph describes real-world entities typically 
encoded as attribute vectors. Similarly, each edge has an attribute 
vector describing its associated information. An adjacency matrix A is 
used to represent a graph, where an entry in column u (representing 
node u) and row v (representing node v) is 1 if nodes u and v are 
connected and 0 otherwise. These entries can also be edge weights 
between nodes u and v. A path from a source node to a target  
node is given by an ordered sequence of edges connecting  
them. A subgraph S = (𝒱𝒱S, 𝒱S) is a subset of a graph G, where 𝒱𝒱S is a 
subset of 𝒱𝒱 and 𝒱S is a subset of 𝒱. For any node u, its neighbourhood 
is a subgraph composed of nodes that are directly linked to u  
(that is, there is a path of length 1 between u and any other nodes in 
the subgraph). Supplementary Note 1 provides additional 
information.

Machine-learning tasks on graphs
To extract information from networks, classic machine learning 
relies on summary statistics (that is, degrees or clustering 
coefficients) or carefully engineered features to measure 
network structures (such as network motifs). By contrast, 
representation learning automatically learns to encode networks 
into low-dimensional representations (or embeddings) using 
transformation techniques based on deep learning and nonlinear 
dimensionality reduction. The learned representations can be used 
in a myriad of tasks (Supplementary Note 2).

Prediction of the properties of nodes, links and graphs
The objective is to learn representations of graph elements, namely 
nodes, edges, subgraphs or entire graphs. Representations are 
optimized so that performing algebraic operations in the embedding 
space reflects the graph’s topology. Optimized representations 
can be fed into models to predict properties of graph elements, 
such as the function of proteins in an interactome network (a 
node-classification task), the binding affinity of a chemical compound 
to a target protein (a link-prediction task) and the toxicity profile of a 
candidate drug (a graph-classification task).

Latent graph learning
Graph representation learning exploits relational inductive biases 
for data that come in the form of graphs. In some settings, however, 
the graphs are not readily available for learning. This is typical of 
many biological problems, where graphs such as gene-regulation 
networks are only partially known. Latent graph learning is concerned 
with inferring the graph from the data. The latent graph can be 
application-specific, and optimized for the downstream task. Also, 
such a graph might be as important as the task itself, as it can convey 
insights about the data and offer a way to interpret the results.

Graph generation
The objective is to generate a graph G representing a biomedical 
entity that is likely to have a property of interest, such as high 
drug-likeness. The model is given a set of graphs 𝒢𝒢 with such a 
property, and is tasked with learning a nonlinear mapping function 
characterizing the distribution of graphs in 𝒢𝒢. The learned distribution 
is used to optimize a new graph G′ with the same property as that of 
the input graphs.

http://www.nature.com/natbiomedeng
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latent distribution (in particular, through variational autoencod-
ers93–95 or generative adversarial networks96). Decoding a new graph 
is more difficult than decoding an image or text because a graph is 
discrete and unbounded in structure and size, and the nodes in it have 
no particular order. Common practices to generate new graphs 
include the prediction of a probabilistic fully connected graph fol-
lowed by the use of graph matching to find the optimal subgraph97; 
the decomposition of a graph into a tree of subgraph structures and 
the generation of a tree structure instead, followed by the generation 
of assemblies of subgraphs93; and the sequential sampling of new 
nodes and edges98,99.

Applications in biomedicine
Biomedical datasets involve rich multimodal and heterogeneous types 
of data, such as molecular interactions and healthcare systems (Fig. 3).  
Methods of graph representation learning are suited to leverage struc-
tural information in such multimodal datasets100.

For instance, at the molecular level, atoms and bonds can be repre-
sented as nodes and edges, respectively. Physical interactions or func-
tional relationships between proteins also naturally form a network. 
Whether an unknown protein clusters in a particular neighbourhood of 
known proteins and shares direct neighbours with them is informative 
of the binding affinity and function of the unknown protein101. Hence, 
by learning molecular representations of proteins and their physical 
interactions, graph representation learning can be applied to predict-
ing protein function.

At the genomic level, genetic elements can be incorporated into 
networks by extracting the co-expression information of coding genes 
from transcriptomic data. Because spatial molecular profiling at the 
single-cell level has enabled the mapping of genetic interactions at 
the cellular and tissue levels, investigating the cellular circuitry of 
molecular functions through gene co-expression data can help uncover 
disease mechanisms. For instance, as implicated by the network par-
simony principle13, the shortest path in a molecular network between 
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Fig. 3 | Biomedical applications of graph representation learning. Networks 
are prevalent across biomedical areas. Protein structures and chemical 
compounds can be modelled as a network in which nodes represent atoms and 
edges indicate a bond between pairs of atoms. In protein–protein interaction 
networks, the nodes represent proteins and the edges indicate physical 
interactions (top left). In drug–drug interaction networks, the nodes are drugs, 
and are connected by synergistic or antagonistic relationships (bottom left). 
In networks of protein–drug interactions, edges indicate that a drug binds to a 
protein target. Edges between proteins and diseases indicate proteins (or genes) 

associated with a disease, and edges between drugs and diseases represent drugs 
that are indicated for the disease. Patient information, such as medical images 
(modelled as spatial networks of cells, tumours and lymph nodes, for example; 
top right) and EHRs (modelled as networks of medical codes and of concepts 
generated by co-occurrences in the patient records; bottom right), are often 
integrated into a cross-domain knowledge graph of proteins, drugs and diseases 
(centre). Such disease-association networks often represent diseases as nodes 
and co-morbidities as edges. Edge relations can also mean ‘targets’, ‘is associated 
with’, ‘is indicated for’ or ‘has phenotype’, for example.
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disease-associated genes often correlates with causal molecular path-
ways16,45. Also, learned embeddings that capture genome-wide interac-
tions can enhance disease predictions at the resolutions of single cells 
and tissues.

Moreover, networks composed of small molecule drugs, proteins 
and diseases can be used to model drug–drug interactions, the binding 
of drugs to target proteins, and the identification of drug-repurposing 
opportunities. For example, according to a corollary of the local 
hypothesis13, the topology of drug combinations is indicative of syner-
gistic or antagonistic relationships102. Learning the topology of graphs 
with nodes representing drugs, proteins and diseases can improve pre-
dictions of candidate drugs, the identification of potential off-target 
effects, and the prioritization of novel drug combinations.

Proteins
Graph representation learning has been widely used to model pro-
teins and produce new protein designs by optimizing over the input 
space (such as amino acid sequences) of a predictive model, and to 
find proteins that satisfy the design criteria (such as having specific 
protein functions103,104). Specifically, the inductive ability of graph 
convolutional networks (GCNs) to generalize to data points unseen 
during model training, and to generate new data points from scratch by 
decoding latent representation from the embedding space, has enabled 
the discovery of new molecules, interactions and functions100,105,106.

Computationally elucidating protein structure has been an 
ongoing challenge33. Because proteins are folded into complex 3D 
structures, they can be represented as graphs. For example, a contact 
distance graph can be constructed where the nodes are individual resi-
dues and the edges are determined by a physical distance threshold107. 
Edges can also be defined by the ordering of amino acids in the primary 
sequence107. Additionally, spatial relationships between residues (such 
as distances and angles) may be used as features for edges108.

Protein structures can be modelled by capturing dependencies 
in their sequences of amino acids (for example, by applying GNNs to 
learn the local neighbourhood structure of each node) to generate 
protein embeddings108,109. Concretely, protein embeddings can be 
learned by identifying short- and long-range dependencies across 
sequences corresponding to their 3D structures, and then used to 
predict primary sequences from 3D structures109. Alternatively, one 
can use a hierarchical process of learning atom-connectivity motifs 
to capture molecular structure at varying levels of granularity (at the 
levels of the motif, connectivity and atoms) in the protein embeddings, 
with which new 3D structures can be generated. This is a difficult task, 
owing to the computational constraints of generalizability across dif-
ferent classes of molecules and of flexibility for a wide range of sizes110. 
Recent review articles have covered machine learning for molecular 
design33,111, graph generation112, the prediction of molecular proper-
ties33,34, and therapeutic-compound design and generation.

Protein interactions
Various data modalities, including chemical structure, binding affini-
ties, physical and chemical principles, and amino acid sequences, have 
been integrated to improve the quantification of protein interactions33. 
GNNs are commonly used to generate representations of proteins 
on the basis of chemical features (for example, the locations of free 
electrons donors and of proton donors) and of geometric features 
(such as distance-dependent curvature) to predict protein-pocket–
ligand interactions and protein–protein interactions113; to generate 
intramolecular and intermolecular residue contact graphs to predict 
intramolecular and intermolecular energies, binding affinities and 
quality measures for a pair of molecular complexes114; and to generate 
ligand–protein and receptor–protein graphs to predict whether a pair 
of residues from the ligand and receptor proteins belongs to an inter-
face108. Combining evolutionary, topological and energetic information 
about molecules enables the scoring of docked conformations on the 

basis of the similarity of random walks simulated on a pair of protein 
graphs (Supplementary Note 3)52.

Owing to experimental and resource constraints, the most 
updated networks of protein–protein interactions are limited in their 
number of nodes (proteins) and edges (physical interactions)115. Yet 
topology-based methods can capture and leverage the dynamics of 
biological systems to enrich existing protein–protein interaction 
networks116. Some of these methods first apply graph convolutions 
to aggregate structural information in the graphs of interest (such 
as protein–protein interaction networks and ligand–receptor net-
works), use sequence modelling to learn the dependencies in amino 
acid sequences, and then concatenate the two outputs to predict the 
presence of physical interactions100,117. Interestingly, such concatenated 
outputs have been treated as ‘image’ inputs to convolutional neural 
networks117. Similar graph convolution methods can also be used to 
remove less credible interactions, thereby constructing a more reliable 
protein–protein interaction network118.

Protein functions and cellular phenotypes
Characterizing a protein’s function in specific biological contexts 
is a challenging and experimentally intensive task119,120. However,  
innovations in techniques for the representation of protein struc-
tures and interactions have facilitated the prediction of protein 
function121, especially when leveraging gene ontologies and tran-
scriptomic data.

Gene ontology terms122 are a standardized vocabulary for describ-
ing molecular functions, biological processes and cellular locations 
of gene products123. They have been built as a hierarchical graph that 
GNNs can leverage to learn dependencies of the terms123, and can also 
be directly used as protein-function labels103,124. In the latter case, 
sequence-similarity networks are typically constructed and com-
bined with protein–protein interaction networks, and then protein 
features (such as amino acid sequence, protein domains, subcellular 
location or gene expression profiles) are integrated to predict protein 
function103,124. Additionally, gene-interaction networks that leverage 
transcriptomic data105,125 can capture context-specific interactions 
between genes (Fig. 4a).

Other methods of graph representation learning for the prediction 
of protein function involve defining diffusion-based distance metrics 
on protein–protein networks for predicting protein function126; the 
use of the theory of topological persistence to compute signatures 
of a protein on the basis of its 3D structure127; and the application of 
TDA to extract features from protein-contact networks created from 
3D coordinates128 (Supplementary Note 3). Additionally, an attention 
mechanism for protein-sequence embeddings generated by the lan-
guage model BERT (for ‘bidirectional encoder representations from 
transformers’) has facilitated the interpretability of the predictions 
of such networks129,130.

Gene expression
Diseases can be classified according to symptoms, and these can 
sometimes be caused by molecular dysfunction resulting from genetic 
mutations. Hence, diagnosing many diseases requires knowledge 
of alterations in the transcription of coding genes, so as to capture 
genome-wide associations driving disease onset and progression. 
Methods of graph representation learning allow for the analysis of 
heterogeneous networks of multimodal information, from genomic 
data to pathophysiology (Fig. 4b).

Approaches that rely solely on gene expression data typically 
transform the co-expression matrix into a more topologically mean-
ingful form131–133. Gene-expression data can be transformed into a 
coloured graph that captures the shape of the data (by using TDA133 
Supplementary Note 3), which then enables downstream analyses 
through network-science metrics and graph machine learning. Topo-
logical landscapes present in gene-expression data can be vectorized 
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and fed into a GCN to classify the disease type132. Alternatively, gene 
expression data can be used directly to construct networks of genes 
and diseases that are then input into a joint matrix factorization and 
a GCN to draw disease–gene associations, akin to a recommendation 
task131. Additionally, applying GCNs, variational autoencoders and 
generative adversarial networks jointly to gene-correlation networks 
(initialized with a subset of gene-expression matrices) can generate 
disease networks with the desired properties134.

Because gene-expression data can be noisy and variational, the 
co-expression matrices can be fused with existing biomedical networks 

(for example, networks of gene-ontology annotations and of pro-
tein–protein interactions), and the resulting graph fed into graph 
convolutional layers135–137. Doing so has enabled more interpretable 
disease-classification models (such as models weighting gene interac-
tions on the basis of existing biological knowledge). However, models 
trained solely on gene-interaction networks are unable to capture all 
gene-regulation activities138. To this end, methods of graph represen-
tation learning, such as GNNs, can learn robust and meaningful repre-
sentations of molecules (even with an incomplete interactome101) and 
inductively infer new edges between pairs of nodes139.
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Fig. 4 | Representation learning in four areas of biomedicine and healthcare. 
a, Cell-type-aware protein-representation learning via multilabel node 
classification. b, Disease classification using subgraphs. c, Cell-line-specific 
prediction of interacting drug pairs via edge regression with transfer learning 

across cell lines. d, Integration of health data into knowledge graphs to predict 
patient diagnoses or treatments via edge regression. Box 2 provides context and 
details for each panel. HPO, Human Phenotype Ontology.
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Box 2

Learning multiscale representations with graphs
Proteins and cell types
Dataset
Single-cell transcriptomic and proteomic data capture the 
heterogeneity of gene expression across diverse types of cells216,217. 
GNNs can help inject cell-type-specific gene-expression information 
into cell-type-specific gene-interaction networks140,218,219. To do so, a 
global protein-interaction network115,220 is needed.

Learning task
On a global gene-interaction network, multilabel node classification 
can be performed to predict whether a gene is activated in a 
specific cell type on the basis of scRNA-seq experiments. If N cell 
types are identified in each experiment, each gene is associated 
with a vector of length N. Given the gene interaction network and 
label vectors for a select number of genes, the task is to train a 
model that predicts every element of the vector for a new gene such 
that predicted values indicate the probabilities of gene activation in 
various cell types (Fig. 4a). To enable inductive learning, nodes (that 
is, genes) are split into training, validation and test sets such that the 
model can generalize to genes that it has not seen.

Impact
Generating gene embeddings that consider differential expression 
at the cell-type level can enable predictions at single-cell resolution, 
with considerations for factors including disease and cell states, 
and temporal and spatial dependencies140,142. The implications of 
such cell-type-aware gene embeddings extend to the prediction 
of cellular function and to the identification of cell-type-specific 
disease features140. For example, quantifying ligand–receptor 
interactions using single-cell-expression data has predicted 
intercellular interactions in tumour microenvironments (in particular, 
via CellPhoneDB221 or NicheNet222). Experimental validation of the 
predicted cell–cell interactions in distinct spatial regions of tissues and 
tumours showed the importance of spatial heterogeneity in tumours223. 
Unlike methods for standard representation learning, GNNs can 
explicitly model dependencies (such as physical interactions) between 
proteins as well as single-cell gene expression224,225.

Diseases and phenotypes
Dataset
Physicians use a standardized vocabulary of symptoms (that is, 
phenotypes) to describe human diseases. Hence, diseases can 
be modelled as collections of associated phenotypes and used to 
diagnose patients on the basis of the symptoms that they present. 
In a graph built from the standardized vocabulary of phenotypes 
(the Human Phenotype Ontology3), the nodes represent 
phenotypes and the edges indicate hierarchical relationships 
between them. A disease described by a set of its phenotypes 
thus corresponds to a subset of nodes in the ontology, and thus 
forms a subgraph of it (a subgraph can contain many disconnect 
components dispersed across the entire graph169).

Learning task
Given a dataset of subgraphs and disease labels for a select number 
of them, the task is to generate an embedding for every subgraph 
and to use the learned subgraph embeddings to predict the disease 
most consistent with the set of phenotypes that the embedding 
represents169 (Fig. 4b).

Impact
Modelling diseases as rich graph structures (such as subgraphs) 
enables a more flexible representation of diseases than relying 
on individual nodes or edges. Graph structures can better resolve 
complex phenotypic relationships and improve the differentiation of 
related diseases or disorders.

Drugs and drug combinations
Dataset
Combination therapies are increasingly used to treat complex  
and chronic diseases. However, it is experimentally intensive and 
costly to evaluate whether two or more drugs interact  
with each other and whether the combination leads to effects that 
are different from the additive effects of the individual drugs.  
Graph representation learning can leverage perturbation 
experiments performed across cell lines to predict the  
responses, to drug combinations, of unseen cell lines with 
mutations of interest (in particular, disease-causing mutations).  
A multimodal network of protein–protein, protein–drug, and  
drug–drug interactions where nodes are proteins and drugs,  
and edges of different types indicate physical contacts  
between proteins, the binding of drugs to their target proteins, and 
interactions between drugs (such as synergistic effects, where the 
effects of the combination are different from the contributions  
of the effects of each drug)226,227 can be constructed for every  
cell line, yielding a collection of cell-line-specific  
networks226 (Fig. 4c).

Learning task
From the drug–protein network of a single cell line, one can predict 
whether two or more drugs are interacting226. Concretely, nodes of a 
drug–protein network are embedded into a compact space such that 
distances between node embeddings correspond to the similarities 
of the local neighbourhoods of the nodes. The learned embeddings 
can then be used to decode drug–drug edges and to predict the 
probabilities of two drugs interacting. Transfer learning can then be 
applied to leverage the knowledge gained from one cell-line-specific 
network so as to accelerate the training and to improve the accuracy 
of the model across other cell-line-specific networks228 (Fig. 4c). 
Specifically, a model can be developed by using a drug–protein 
network for one cell line, and reused on the drug–protein network of 
any other cell line.

Impact
Standard methods are unable to capture topological dependencies 
between drugs and targets, and most predictive models for drug 
combinations do not consider the tissue specificity or cell-line 
specificity of drugs. Because the effects of drugs on the human 
body are not uniform, it is crucial to account for such anatomical 
differences. Additionally, the ability to prioritize candidate drug 
combinations in silico could reduce the cost of developing and 
testing them experimentally.

Personalized health information fused with knowledge graphs
Dataset
Robust methods that can inject biomedical knowledge into 
patient-specific information are needed to produce actionable and 
trustworthy predictions229. Because EHRs can also be represented 
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Single-cell transcriptomics
Single-cell RNA sequencing (scRNA-seq) data lend themselves to graph 
representation learning for the modelling of cellular differential pro-
cesses140,141 and disease states142. A predominant approach to analyse 
scRNA-seq datasets is to transform them into gene-similarity networks, 
(such as gene co-expression networks) or into cell-similarity networks (by 
correlating gene-expression readouts across individual cells). Applied 
to such networks, graph representation learning can, for instance, 
impute scRNA-seq data143,144 and predict cell clusters144,145. Cell-similarity 
graphs have also been created using autoencoders by first embedding 
gene-expression readouts and then connecting genes based on how 
similar their embeddings are144. Alternatively, variational graph autoen-
coders produce cell embeddings and interpretable attention weights, 
indicating what genes the model attends to when deriving an embedding 
for a given cell146. Beyond GNNs and graph autoencoders, learning a 
manifold over a cell-state space can quantify the effects of experimental 
perturbations141. To this end, cell-similarity graphs are constructed for 
control samples and treated samples, and used to estimate the likeli-
hood of a cell population being observed under a given perturbation141.

Spatial molecular profiling can measure both gene expression 
at the cellular level and the location of cells in tissue147. As a result, 
spatial transcriptomics data can be used to construct cell graphs148, 
spatial gene-expression graphs149, gene-co-expression networks or 
molecular-similarity graphs35. Creating graphs of cell neighbourhood 
and of spatial gene expression requires a distance metric, as edges are 
determined on the basis of spatial proximity, whereas graphs of gene 
co-expression and molecular similarity need a threshold applied on 
the gene-expression data35. From such networks, methods of graph 
representation learning produce embeddings that capture the network 
topology and that can be further optimized for downstream tasks. 
For instance, a cell-neighbourhood graph and a gene-pair expression 
matrix enable GNNs to predict ligand–receptor interactions148. In fact, 
because these interactions are directed, they could be used to infer 
causal interactions of previously unknown ligand–receptor pairs148,150.

Small-molecule drugs
Modern drug discovery requires elucidating the chemical structure of 
a candidate drug, identifying its drug targets, quantifying its efficacy 
and toxicity, and detecting its potential side effects13,14,32,151. Because 
such processes are costly and time consuming, drug-discovery pipe-
lines leverage in silico approaches. However, cross-domain expertise 
is necessary to develop a drug with optimal binding affinity and opti-
mal specificity to biomarkers, maximal therapy efficacy, and minimal 
adverse effects. Therefore, it is critical to integrate chemical-structure 
information, protein interactions and clinically relevant data (such as 
indications and reported side effects) into predictive models for drug 
discovery and drug repurposing. Graph representation learning can be 
used to characterize drugs at the systems level without patient data to 
make predictions about interactions with other drugs, protein targets, 
side effects and diseases6,38–40,48,152.

As with proteins, small molecules are modelled as 2D and 3D 
molecular graphs such that nodes are atoms and edges are bonds. 
Each atom and bond may include features (such as atomic mass, atomic 
number and bond type) that are added to the model79,153. Edges can also 
be added to indicate the spatial distance between each two atoms65 or 
information on bond angles and rotations can be incorporated into 
the molecular graph80.

Representing molecules as graphs has improved predictions on 
various quantum-chemistry properties. Simplistically, GNNs aggregate 
information from neighbouring atoms and bonds to learn the local 
chemistry of each atom153. For example, generating representations of 
the atoms, distances and angles has allowed the identification of the 
angles and directions of the interactions between atoms80. Producing 
atom-centred representations based on a weighted combination of 
their neighbours’ features (via an attention mechanism) can be used 
to model interactions among reactants and to predict the outcomes 
of the reactions154.

Alternatively, molecular graphs have been decomposed into a 
‘junction tree’, where each node represents a substructure in the mol-
ecule. This aims to learn representations of both the molecular graph 
and the junction tree, for the generation of new molecules with desir-
able properties93. In fact, iteratively editing fragments of a molecular 
graph during training has improved predictions of high-quality drug 
candidates targeting a protein of interest155.

Drug–drug and drug–target interactions
A drug’s binding affinity and specificity to its target determine the 
drug’s effectiveness and potential for off-target effects34. However, 
quantifying these metrics requires labour-intensive and costly experi-
ments33,34. Modelling the molecular structure of the protein targets 
of small molecules as well as their binding affinities and specificities 
by using graph representation learning has accelerated the study of 
drug–target interactions.

Topological data analysis156 and shallow network embedding57 
have been used to learn representations of drugs and targets. Con-
cretely, TDA transforms experimental data into a graph where nodes 
represent compounds and edges indicate a level of similarity between 
them156 (Supplementary Note 3). Methods of shallow network embed-
ding can also be used to generate embeddings for drugs and targets by 
computing drug–drug, drug–target and target–target similarities157. 
Non-graph methods have also been used to create graphs that are 
then fed into a graph model to generate embeddings. For instance, 
the k-nearest-neighbours algorithm is commonly used to construct 
drug-similarity and target-similarity networks158. The resulting embed-
dings are fed into downstream machine-learning models.

Predictions of drug–drug and drug–target interactions have been 
improved by fusing chemical structures, target sequences and clinical 
implications. For example, attention mechanisms have been applied 
on drug graphs, with chemical structures and side effects as features, 
to generate interpretable predictions of drug–drug interactions159. 

by networks, networks of EHRs can be fused with biomedical 
networks, thus enabling graph representation learning to make 
predictions on patient-specific features. An example is a knowledge 
graph, where nodes and edges represent different types of 
biological entities and their various relationships. Examples of 
such relations are ‘upregulate / downregulate’, ‘treats’, binds’, 
‘encodes’ and ‘localizes’7. To integrate patient data into a network, a 
distinct metanode is created to represent each patient, and edges 
are added between the patient’s metanode and its associated 
biomedical-entity nodes (Fig. 4d).

Learning tasks
Node embeddings for each patient can be learned while predicting 
(via edge regression) the probability of a patient developing a specific 
disease or of a drug effectively treating the patient7 (Fig. 4d).

Impact
Most networks do not consider patient data, which can prevent 
robust predictions of a patient’s conditions and their potential 
responsiveness to particular drugs. The ability to integrate patient 
data with biomedical knowledge may address this.

(continued from previous page)
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Additionally, two separate GNNs may be used to learn representa-
tions of protein graphs and small-molecule graphs, to predict drug–
target affinity160. And protein-structure representations generated 
by graph convolutions have been combined with protein-sequence 
representations (using shallow network embedding or convolutional 
neural networks) to predict the probability of small-molecule–protein 
interactions161–164.

Drug–disease associations and disease biomarkers
Part of the drug-discovery pipeline involves minimizing any adverse 
events33,34. However, the experiments required to measure drug–drug 
interactions and toxicity are costly and face a combinatorial explosion 
problem33. By considering gene-expression data, gene ontologies, drug 
similarity and other clinically relevant data regarding side effects and 
indications, methods of graph representation learning enable the in 
silico modelling of drug action, allowing for a more efficient ranking 
of candidate drugs for repurposing.

Drug and disease representations have been learned on homoge-
neous graphs of drugs, diseases or targets. For instance, medical terms 
in subject headings may be used to construct a drug–disease graph, 
from which latent representations of drugs and diseases are learned 
using various graph-embedding algorithms (such as DeepWalk and 
LINE; ref. 165). TDA (Supplementary Note 3) has also been applied for 
the separate construction of graphs of drugs, targets and diseases; 
representations of such entities are learned and optimized for down-
stream prediction166.

Recent methods have fused multimodal data to create heterogene-
ous graphs. For example, neighbourhood information can be aggre-
gated from heterogeneous networks of drugs, targets and diseases, 
to predict drug–target interactions167. Protein–protein interaction 
networks have also been combined with genomic features to pre-
dict drug sensitivity using GNNs168. Overall, approaches integrating 
cross-domain knowledge as a vast heterogeneous network or into the 
model’s architecture may better predict drug action (Fig. 4c).

Applications in healthcare
Patient records, such as medical images and EHRs, can be represented 
as networks, and can be incorporated into networks of proteins, dis-
eases and drugs. For example, following the local hypothesis, the 
shared-components hypothesis and the disease-module hypothesis13, 
patients with rare diseases probably have similar phenotypes and even 
share disease mechanisms if they are represented by nodes that have 
common neighbours and topology169,170.

Methods of graph representation learning can, in principle, inte-
grate patient records with molecular, genomic and disease networks 
for personalized predictions. Graph representation learning has also 
been used to fuse multimodal knowledge with patient records. Here 
we highlight two types of patient data that have been successfully 
integrated using deep graph learning: histopathology images8,171,172 
and EHRs173,174.

Histopathology images
Whole histopathology slides and other medical images can typically 
be converted into spatial graphs, where nodes represent the cells in 
the image and edges indicate that a pair of cells are adjacent in space. 
Deep graph learning can then detect subtle signs of disease progres-
sion in the images, also by integrating other modalities (such as tissue 
localization175 and genomic features8).

Cell–tissue graphs generated from histopathology images can 
encode the spatial context of cells and tissues for a given patient. 
Information on cell morphology and tissue microarchitecture can 
be aggregated into cell graphs to, for instance, grade cancer histol-
ogy images (for example, using GNNs)8,176–178. An example aggrega-
tion method involves pooling with an attention mechanism to infer 
relevant patches in the image176. A hierarchical GNN can then learn 

relevant representations of cell morphology and cell–cell interactions, 
tissue morphology and the spatial distribution of cells, cell-to-tissue 
hierarchies, and the spatial distribution of cells in the tissue, as all of 
these can be captured in a cell-to-tissue graph175. Because interpret-
ability is critical for models that generate patient predictions, post-hoc 
graph-pruning optimization may be performed on a cell graph gener-
ated from a histopathology image, to define subgraphs that explain 
the original cell-graph analysis179.

Methods of graph representation learning can also be used 
for classifying other types of medical images. For instance, 
GNNs can model relationships between lymph nodes to compute 
the spread of lymph-node gross tumour volume on the basis of 
computed-tomography images180. GNNs have been used to classify the 
progression of Alzheimer’s disease from magnetic resonance images 
that are converted into graphs181–183. GNNs can also leverage relational 
structures, such as similarities among chest X-rays, to improve down-
stream tasks, such as disease diagnosis and localization184. Moreover, 
GNNs have been used to classify patients according to colon-cancer 
stage185 after TDA had been applied to generate graphs from whole-slide 
images of tissues from various sources (Supplementary Note 3).

With spatial gene-expression graphs (weighted and undirected) 
and corresponding histopathology images, gene-expression informa-
tion can be aggregated to generate embeddings of genes that could 
then be used to investigate spatial domains (to differentiate between 
cancer and noncancer regions in tissues, for instance)186. Because 
multimodal data enables more robust predictions, GNNs have been 
applied to spatial graphs of cells from histopathology images alongside 
genomic and transcriptomic data, to predict treatment responses and 
resistance, histopathology grading, and patient survival8.

Patient records
EHRs are typically represented by ICD (International Classification 
of Disease) codes173,174. The hierarchical information inherent to ICD 
codes (medical ontologies) lends itself to the creation of a rich network 
of medical knowledge. In addition to ICD codes, medical knowledge 
can take the form of many data types, including symptoms, molecular 
data, drug interactions and side effects. By integrating patient records 
into networks, graph representation learning can generate predictions 
tailored to individual patients.

Methods that embed medical entities, including EHRs and medical 
ontologies, leverage the inherently hierarchical structure of knowledge 
graphs of medical concepts187. For example, low-dimensional embed-
dings of EHR data can be generated by separately considering medical 
services, doctors and patients in shallow network embeddings and 
GNNs188,189. Alternatively, attention mechanisms may be applied on 
EHR data and medical ontologies to capture parent–child relation-
ships173,190,191. Rather than assuming a certain structure in the EHRs, 
a graph convolution transformer can learn hidden EHR structures75.

EHRs also have underlying spatial and temporal dependencies192 
that many recent methods have leveraged to perform time-dependent 
prediction tasks. A mixed pooling multi-view self-attention 
autoencoder can generate patient representations for predicting  
either a patient’s risk of developing a disease in a future visit, or the 
diagnostic codes of the next visit193. Combined long short-term and 
GNN models have been used to represent patient-status sequences 
and temporal-medical-event graphs, respectively, to predict  
future prescriptions or disease codes194,195. Alternatively, a patient  
graph can be constructed on the basis of patient similarities, and 
patient embeddings learned by a long short-term model with a GNN 
architecture are then optimized to predict patient outcomes196. Fur-
thermore, a short-term GCN74 has been designed to leverage the 
underlying spatial and temporal dependencies of EHR data to gener-
ate patient diagnoses174.

EHRs are often supplemented with other modalities, such as dis-
eases, symptoms, molecular data and drug interactions7,192,197,198 (Fig. 4d).  
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A probabilistic knowledge graph of EHR data, which include medical 
history, drug prescriptions and laboratory examination results, has 
been used to explore semantic relations between EHR entities in a shal-
low network embedding method199. Meta-paths may alternatively be 
exploited in an EHR-derived knowledge graph to leverage higher-order 
and semantically important relations for disease classification200. Node 
features for drugs and diseases can be initialized using Skip-gram and 
then a GNN leveraging multilayer message passing can be applied to 
predict adverse drug events197. Moreover, models combining recurrent 
neural networks and GNNs have been applied to EHR data integrated 
with drug–disease interactions to better recommend combinations 
of medications201.

Outlook
Powered by network principles founded on decades of research, deep 
learning on graphs is poised to address major gaps in biology and 
medicine. Graph representation learning has provided insights into 
the structure and function of proteins and small molecules, captured 
disease-associated transcriptional changes (at single-cell resolution 
and considering the spatial context), and enabled new analyses via the 
fusion of biomedical knowledge and patient information.

As graph representation learning has aided the mapping of geno-
types to phenotypes, leveraging it for fine-scale mapping of genetic var-
iants appears promising202. By re-imagining genome-wide-association 
studies and expression-quantitative-trait-loci studies203 as networks, 
biologically meaningful modules can be discovered that highlight key 
genes involved in the underlying mechanisms of a disease204. Alterna-
tively, network propagation can be seeded with quantitative-trait-locus 
candidate genes202. Because graphs can model long-range depend-
encies or interactions, they can also model chromatin elements 
and the effects of their binding to regions across the genome205,206. 
Three-dimensional chromosomal structures could be reconstructed 
by predicting the 3D coordinates of nodes derived from a Hi-C con-
tact map207. Graph representation learning for the analysis of spatial 
molecular-profiling data will continue to expand. For instance, with 
causal GNNs, one may be able to better capture changes in expres-
sion levels observed in scRNA-seq data over time or as a result of a 
perturbation141,208.

Effective integration of healthcare data with molecular, genomic, 
disease and drug data can help generate more accurate and inter-
pretable predictions about biological systems underlying health and 
disease209. Because of the utility of graphs, there has been a major 
push to generate knowledge graphs that synthesize and model multi-
scale and multimodal data, from genotype–phenotype associations 
to population-scale epidemiological dynamics. In public health, 
spatial and temporal networks could model space-dependent and 
time-dependent observations (such as disease states or susceptibility 
to infection210) to spot trends, detect anomalies and interpret temporal 
dynamics.

Importantly, as algorithms for graph representation learning are 
increasingly employed in biomedicine and healthcare, it is essential to 
ensure that the representations are explainable211, fair212 and robust213, 
and that the algorithms are revisited to minimize health disparities214 
and to take into account new information on algorithmic biases.
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