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Networks—or graphs—are universal descriptors of systems of interacting
elements. Inbiomedicine and healthcare, they can represent, for example,
molecular interactions, signalling pathways, disease co-morbidities or

healthcare systems. In this Perspective, we posit that representation
learning canrealize principles of network medicine, discuss successes
and current limitations of the use of representation learning on graphs
inbiomedicine and healthcare, and outline algorithmic strategies that
leverage the topology of graphs to embed them into compact vectorial
spaces. We argue that graph representation learning will keep pushing
forward machine learning for biomedicine and healthcare applications,
including the identification of genetic variants underlying complex traits,
the disentanglement of single-cell behaviours and their effects on health,
the assistance of patients in diagnosis and treatment, and the development
of safe and effective medicines.

Networks are pervasive in biology and medicine. They can represent
molecularinteraction maps or population-scale social and healthinter-
actions, for example. Because of the multitude of biological entities
and associations that networks can describe, graph representations
of biological organization and biomedical knowledge are prevalent.
For instance, edges in a regulatory network can indicate activating
andinhibitory relationships between genes'; edges between genes and
diseases canindicate genes that are ‘upregulated by’, ‘downregulated
by’ or ‘associated with’ a disease?; and edges in a knowledge network
built from electronic healthrecords (EHRs) canindicate co-occurrences
of medical codes across patients®. The ability to model biomedical
discoveries and even overlay patient information inaunified datarep-
resentation has driventhe development of deep learning for networks.
Infact, the data diversity and multimodality in networks not only boost
the performance of predictive deep learning models, they enable their
broad generalization to settings not seen during training® and improve
modelinterpretability”®. However, networks can give rise to abewilder-
ing degree of complexity that can only be fully understood through a
holistic and integrated view’ .

Fortunately, deep learning on graphs is rooted on organizing
principles identified in the past two decades in systems biology and
medicine” ™. These principles link network structure to molecular

phenotypes, biological functions or disease states. Thus, we argue
that they provide a conceptual grounding that explains the successes
of representation learning on graphs—that is, of machine-learning
techniques for the generation of optimized mathematical representa-
tions of data structured as graphs—and that informs its future devel-
opments. Forinstance, as defined by the local hypothesis, interacting
entities are typically more similar than non-interacting entities”. The
local hypothesis hence implicates that, in protein interaction net-
works, mutationsininteracting proteins often lead to similar diseases".
According to the disease-module hypothesis®, cellular components
(such as genes, proteins or metabolites associated with a specific dis-
ease) tend to cluster in the same network neighbourhood'. According
to the shared-components hypothesis, diseases driven by perturba-
tions of the same components (or of closely associated components)
are phenotypically similar and have similar responses when targeted
by a therapeutic. Furthermore, essential genes are typically found in
hubs of amolecular network, whereas non-essential genes (including
genesassociated with disease) arelocated at the network’s periphery®.
Moreover, the parsimony principle dictates that the shortest pathsin
amolecular network involving the fewest disease-associated compo-
nents correlate with causal molecular pathways®. These hypotheses
and principles continue to drive discoveries.
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Fig.1|Representation learning for networks in biomedicine and healthcare.
For any network, graph representation learning transforms the network to
extract patterns, make predictions or gain insights, and leverages these to
produce compact vectorial representations (denoted by the tube-like shapes)
that can be optimized for the downstream task. The right-most schematic shows

Graph transformations, such as
graph convolutions, transformers,
topological maps and similarity metrics.

alocal two-hop neighbourhood around node u; it illustrates how information
(or ‘neural messages’) can be propagated along edges in the neighbourhood,
transformed and then aggregated at node u to arrive at the embedding of u. The
shaded concentric rings englobe the sets of one-hop neighbourhood and two-
hop neighbourhood of u.

We argue that representation learning can realize principles of
network medicine. The core idea is to learn how to represent nodes
(orlarger graphstructures) inanetwork as pointsinalow-dimensional
space, where the geometry of the space is optimized to reflect the
structure of interactions between nodes. Concretely, representation
learning specifies nonlinear transformation functions that map nodes
to points in a compact vectorial space (or embeddings). Such func-
tions are optimized to embed the input network, so that nodes with
similar network neighbourhoods are embedded closely in the vecto-
rial space (and algebraic operations performed in this learned space
reflect the network’s topology). Hence, nodes in the same positional
regions should have similar embeddings, owing to the local hypoth-
esis (for example, highly similar pairs of protein embeddings suggest
similar phenotypic consequences). Additionally, node embeddings
can capture whether the nodes lie within a hub on the basis of their
degree (thatis, the number of connected nodes), whichis animportant
aspect of local neighbourhood (for instance, strongly clustered gene
embeddings indicate essential housekeeping roles). Because of the
shared-components hypothesis, two nodes with significantly over-
lapping sets of neighbours should have similar embeddings, owing to
shared message passing (for example, highly similar disease embed-
dingsimply shared disease-associated cellular components).

In this Perspective, we survey the capabilities of graph represen-
tation learning and highlight notable applications in biomedicine
and healthcare. Some aspects of graph representation learning have
been covered extensivelyintheliterature: deep learning onstructured
data''%; graph neural networks'~' (GNNs); representation learning for
homogeneous and heterogeneous graphs®*?*, solely heterogeneous
graphs®and dynamic graphs®; data fusion”; network propagation?;
topological data analysis® (TDA); and the creation of biomedical net-
works®*~*?, Biomedically focused review articles have surveyed the use
of GNNs for molecular generation®**, single-cell biology™, drug discov-
eryanddrugrepurposing®°,and histopathology*. Other articles have
focused on GNNs, excluding many approachesin graph representation
learning, or have not considered patient-centric methods*’. Here, we
overview the uses of graph representation learning across a range of
areas in biomedicine and healthcare.

Graphrepresentation learning

Graphtheoretic techniques have fuelled many discoveries, from uncov-
ering relationships between diseases* ¢ to repurposing drugs®**5,
Algorithmicinnovations, such asrandomwalks*~', kernels*’ and net-
work propagation®, have played arolein capturing structural informa-
tion from networks. Feature engineering—the process of extracting
predetermined features from a network to suit a user-specified
machine-learning method**—is also a common approach applied to
machinelearning on networks. Itinvolves the hard-coding of network
features (forexample, higher order structures, network motifs, degree
countsand common neighbour statistics) and the feeding of the engi-
neered feature vectors into amachine-learning model. However, hand-
crafting optimally predictive features across diverse types of networks
and applications can be challenging'®.

Forthese reasons, graph representation learning hasemerged as
aleading machine-learning approach for networks. However, its devel-
opmentis challenging because graphs comprise many kinds of entity
(nodes) and various types of interaction (edges) among the entities,
can be topographically complex and have no fixed node ordering or
reference points. Classic deep-learning methods cannot handle such
diverse structural properties and rich interactions (which are pre-
dominantinbiomedical networks) because the methods are designed
for fixed-size grids (such as matrices of pixels in images, and tabular
datasets) or optimized for text and sequences. Akinto how deep learn-
ing on images and sequences has revolutionized image analysis and
natural language processing, we anticipate that graph representation
learning will transform the study of complex systems.

Ingraphrepresentation learning, learned vector representations
(or embeddings) of graph elements are generated such that they
capture the structure and semantics of the network along with any
downstream supervised task (Fig. 1). There is a wide range of meth-
ods for graphrepresentation learning, including manifold learning,
TDA, GNNs and generative graph models (Fig. 2). Box 1describes the
elements of agraph and outlines the main tasks of machine learning
on graphs. In what follows, we outline the main methods of graph
representation learning (additional techniques are outlined in Sup-
plementary Note 4).
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Fig.2| Algorithmic paradigms in graph representation learning. a, Methods
for shallow network embedding generate a dictionary of representations h, for
every node u that summarize graph topology surrounding every node in the
graph. Thisis achieved by learning a function f,that maps nodesinto an
embedding space such that nodes with similar graph neighbourhoods measured
by function f,,getembedded closely. Anindependent decoder can optimize
learned embeddings for downstream tasks, such as the prediction of the
property of anode or alink. Example methods include DeepWalk*, Node2vec”),
LINE*® and Metapath2vec®’, which differ in how they define the similarity function
fnviagraph-traversal techniques (unbiased, biased or typed random walks). b, In
contrast with methods for shallow network embedding, GNNs can generate
representations for any graph element by capturing both the network structure,
the attributes, and node metadata. The embeddings are generated through a
series of nonlinear transformations (that is, message-passing layers; L, denotes
transformations at layer k) that iteratively aggregate information from
neighbouring nodes at the target node u. GNN models can be optimized for
performance on a variety of downstream tasks. Examples of GNN methods
include GCNs (an architecture for simple graphs with multiple message-passing
layers®), GIN (an architecture that is probably the most expressive among the

GCN, GIN, GAT, JK-Net

GCPN, JT-VAE, GraphRNN

class of GNNs®), GAT (an architecture that stacks layers in which nodes are able to
up-weight and down-weight other nodes in their neighbourhoods”) and JK-Net
(ajumping-knowledge network that flexibly leverages, for each node,
neighbourhoods of different size to enable better representations?®.

¢, Generative graph models optimize a latent distribution (Z) to capture the
structure and properties of input graphs (G). The models use the optimized
distribution to generate new graphs (G) predicted to have the same desirable
properties asinput graphs (for example, agenerated graph can represent a
molecular graph of adrug candidate). Examples of these methods include GCPN
(agraph convolutional policy network that produces molecular graphs with
desired properties such as drug likeness and synthetic accessibility, while
obeying physical laws such as chemical valency®®),J T-VAE (a variational
autoencoder that generates molecular graphs in two phases, by first generating a
tree-structured scaffold over chemical substructures, and then combining them
into amolecule with a message-passing network®) and GraphRNN (a deep
autoregressive model that learns to generate graphs by training on a set of graphs
and decomposing the graph-generation process into a sequence of node and
edge formations”. Supplementary Fig.1and Supplementary Note 4 outline other
representation-learning techniques.

Shallow graph embeddings

Shallow-embedding methods optimize acompact vectorial space such
that points close in the graph are mapped to nearby points in the
embedding space, measured by a predefined distance function or an
outer product. These methods are transductive where the encoder
functionisasimple embedding lookup (Fig. 2). Concretely, t methods
involve three steps: the mapping to an embedding space (given a pair
ofnodesuandvinagraphandalearnable function fthat maps nodes
to embeddings, the mapping specifies h,and h,); the definition of
graph similarity (f,(u,v); for example, measured by the distance between
uandvinthegraph) and ofembedding similarity (f,(h,,h,); forexample,
aEuclidean distance function or pairwise dot-product); and the com-
putation ofaloss function (£(f, (u,v),f,(h,, h,)) which quantifies how
theresultingembeddings preserve the desired input-graph similarity).
Thenanoptimizationproceduretominimizetheloss £(f,,(u, v),f,(h,, h,))
is applied. The resulting f serves as a shallow lookup of embeddings
that considers the graph structure only in the loss function.

Shallow embedding methods vary according to various definitions
of similarities. For example, the shortest path length between nodes
is often used as the network similarity, and the dot-product as the
embedding similarity. Similarity can also be defined as co-occurrence
inaseries ofrandomwalks of length k (ref. ). Unsupervised techniques
that predict which node belongs to the walk, such as Skip-gram*® (an
unsupervised learning technique that identifies the nearby nodes,

or context, of any given node to learn its most related nodes), are
then applied on the walks to generate embeddings. Supervised tech-
niques®®, such as Node2vec” (a semi-supervised learning technique
that combines depth-first search and breadth-first search to capture
anode’s network neighbourhood), have been used similarly. In het-
erogeneous graphs, information on the semantic meaning of edges
(thatis, relation types) can be important. Knowledge graph methods
expand similarity measures to consider relation types*~**. Once shal-
low embedding models are trained, the resulting embeddings can be
fedinto separate models optimized for downstream analyses, such as
classification and regression.

Graph neural networks

GNNs are a class of neural networks designed for graph-structured
datasets (Fig. 2). They learn compact representations of graph ele-
ments, their attributes and supervised labels, if any. A typical GNN
consists of a series of propagation layers®, where layer [ carries out
three operations: the passing of neural messages (the GNN computes

amessage mf,’),, = MSG <hff_1), h,(,[_l)) for linked nodes u, v on the basis

of their embeddings from the previous layer hff_l) and h(yl_l)); the
aggregation of neighbourhoods (the messages between node u and

itsneighbours N\ are aggregated as mf,’) = AGG(mE,[,)Uw € N\,); and the
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BOX1

Fundamentals of graph representation learning

Elements of graphs

A graph G = (V, &) consists of a set of nodes V that are connected

by a set of edges €. A homogeneous graph has only one type

of node and one type of edge, whereas a heterogeneous graph
consists of nodes of different type connected by diverse types of
edge. Each node in the graph describes real-world entities typically
encoded as attribute vectors. Similarly, each edge has an attribute
vector describing its associated information. An adjacency matrix A is
used to represent a graph, where an entry in column u (representing
node u) and row v (representing node v) is 1if nodes uand v are
connected and O otherwise. These entries can also be edge weights
between nodes u and v. A path from a source node to a target

node is given by an ordered sequence of edges connecting

them. A subgraph S = (14, Es) is a subset of a graph G, where 1;is a
subset of Vand & is a subset of . For any node u, its neighbourhood
is a subgraph composed of nodes that are directly linked to u

(that is, there is a path of length 1 between u and any other nodes in
the subgraph). Supplementary Note 1 provides additional
information.

Machine-learning tasks on graphs

To extract information from networks, classic machine learning
relies on summary statistics (that is, degrees or clustering
coefficients) or carefully engineered features to measure

network structures (such as network motifs). By contrast,
representation learning automatically learns to encode networks
into low-dimensional representations (or embeddings) using
transformation techniques based on deep learning and nonlinear
dimensionality reduction. The learned representations can be used
in a myriad of tasks (Supplementary Note 2).

updating of representations. A nonlinear transformationis applied to
update nodeembeddingsas hfl’) = UPD(m,(f), hg_l)hsingtheaggregated
message and the embedding from the previous layer. In contrast to
shallow embeddings, GNNs can capture higher order and nonlinear
patterns through multi-hop propagation within several layers of neu-
ral message passing. Additionally, GNNs can optimize supervised sig-
nals and the graph structure simultaneously, whereas a shallow
embedding method requires atwo-stage approachtoachieve the same.

A myriad of GNN architectures define different messages, aggre-
gation and update schemes to derive deep graph embeddings®® 7. For
example, inrefs.”"’7 the researchers assigned importance scores for
nodes during neighbourhood aggregation such that moreimportant
nodes played alarger effect in the embeddings. In refs.®”, the ability
of GNNsto capture structuralinformation of agraph wasimproved by
imposing structural priors, such as a higher order adjacency matrix.
Graph-pooling techniques’ learn abstract topological structures.
And GNNs designed for molecules’*° inject physics-based scores and
domain knowledge into propagation layers.

As biomedical networks can be large and multimodal, special
consideration is needed to scale GNNs to large and heterogeneous
networks. Tothis end, refs. **? developed sampling strategies to intelli-
gently select small subsets of the whole local network neighbourhoods,
and used them to train GNN models. To tackle heterogeneousrelations,
inrefs.”>**** aggregation transformations were designed to fuse diverse
typesofrelations and attributes. Recent architectures have leveraged
dynamic message passing’>*% to deal with evolving and time-varying

Prediction of the properties of nodes, links and graphs

The objective is to learn representations of graph elements, namely
nodes, edges, subgraphs or entire graphs. Representations are
optimized so that performing algebraic operations in the embedding
space reflects the graph’s topology. Optimized representations

can be fed into models to predict properties of graph elements,

such as the function of proteins in an interactome network (a
node-classification task), the binding affinity of a chemical compound
to a target protein (a link-prediction task) and the toxicity profile of a
candidate drug (a graph-classification task).

Latent graph learning

Graph representation learning exploits relational inductive biases

for data that come in the form of graphs. In some settings, however,
the graphs are not readily available for learning. This is typical of
many biological problems, where graphs such as gene-regulation
networks are only partially known. Latent graph learning is concerned
with inferring the graph from the data. The latent graph can be
application-specific, and optimized for the downstream task. Also,
such a graph might be as important as the task itself, as it can convey
insights about the data and offer a way to interpret the results.

Graph generation

The objective is to generate a graph G representing a biomedical
entity that is likely to have a property of interest, such as high
drug-likeness. The model is given a set of graphs G with such a
property, and is tasked with learning a nonlinear mapping function
characterizing the distribution of graphs in G. The learned distribution
is used to optimize a new graph G' with the same property as that of
the input graphs.

graphs, as well as few-shot learning® or self-supervised strategies®**
to deal with graphs that are poorly annotated and that have limited
information about labels.

Generative graph models

Generative graph models generate new structures of nodes and edges
(and even entire graphs) that are likely to have desired properties, such
asnovel molecules with acceptable toxicity profiles (Fig. 2). Tradition-
ally, network science models can generate graphs using deterministic
or probabilistic rules. For instance, starting from an empty graph, the
Erd6s-Rényi model® iteratively adds random edges according to a
predefined probability. The Barabasi-Albert model” grows a graph
byadding nodes and edges such that the degree of the resulting graph
has a power-law distribution, which is often observed in real-world
networks. The configuration model®” adds edges on the basis of prede-
fined node degree sequencesto generate graphs witharbitrary degree
distributions. Although they are powerful asrandom graph generators,
such models cannot optimize graph structures according to proper-
ties of interest.

Deep generative models address the challenge by estimating
distributional graph properties on the basis of a dataset of graphs G
and by inferring graph structures using such optimized distributions.
Agenerative graph model first learns alatent distribution P(Z|G)that
characterizes theinput graphset G. Then, conditioned on this distri-
bution, it decodes a new graph (that is, it generates a new graph G).
There are different ways to encode the input graphs and to learn the
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Fig.3|Biomedical applications of graph representation learning. Networks
are prevalent across biomedical areas. Protein structures and chemical
compounds can be modelled as a network in which nodes represent atoms and
edges indicate abond between pairs of atoms. In protein-protein interaction
networks, the nodes represent proteins and the edges indicate physical
interactions (top left). In drug-druginteraction networks, the nodes are drugs,
and are connected by synergistic or antagonistic relationships (bottom left).

In networks of protein—-drug interactions, edges indicate that adrug binds to a
protein target. Edges between proteins and diseases indicate proteins (or genes)

Disease associations

Spatial organization of
cells and tissues

Nodes: Medical codes and concepts
Edges: Co-occurrences in patient records

£
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associated with a disease, and edges between drugs and diseases represent drugs
that areindicated for the disease. Patient information, such as medical images
(modelled as spatial networks of cells, tumours and lymph nodes, for example;
top right) and EHRs (modelled as networks of medical codes and of concepts
generated by co-occurrences in the patient records; bottom right), are often
integrated into a cross-domain knowledge graph of proteins, drugs and diseases
(centre). Such disease-association networks often represent diseases as nodes
and co-morbidities as edges. Edge relations can also mean ‘targets’, ‘is associated
with’, ‘isindicated for’ or ‘has phenotype’, for example.

latent distribution (in particular, through variational autoencod-
ers™* or generative adversarial networks’®). Decoding a new graph
is more difficult than decoding an image or text because a graph is
discrete and unbounded instructure and size, and the nodesinit have
no particular order. Common practices to generate new graphs
include the prediction of a probabilistic fully connected graph fol-
lowed by the use of graph matching to find the optimal subgraph?’;
the decomposition of agraphinto atree of subgraph structures and
thegeneration of atree structureinstead, followed by the generation
of assemblies of subgraphs®; and the sequential sampling of new
nodes and edges”*°.

Applications in biomedicine

Biomedical datasetsinvolve richmultimodal and heterogeneous types
of data, suchas molecularinteractions and healthcare systems (Fig. 3).
Methods of graph representation learning are suited to leverage struc-
tural information in such multimodal datasets'*°.

Forinstance, at themolecularlevel, atoms and bonds canbe repre-
sented asnodes and edges, respectively. Physical interactions or func-
tional relationships between proteins also naturally form a network.
Whether an unknown proteinclustersin a particular neighbourhood of
known proteins and shares direct neighbours with themisinformative
of the binding affinity and function of the unknown protein'®’. Hence,
by learning molecular representations of proteins and their physical
interactions, graph representation learning can be applied to predict-
ing protein function.

At the genomic level, genetic elements can be incorporated into
networks by extracting the co-expressioninformation of coding genes
from transcriptomic data. Because spatial molecular profiling at the
single-cell level has enabled the mapping of genetic interactions at
the cellular and tissue levels, investigating the cellular circuitry of
molecular functions through gene co-expression data can help uncover
disease mechanisms. For instance, as implicated by the network par-
simony principle®, the shortest pathin a molecular network between
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disease-associated genes often correlates with causal molecular path-
ways'**, Also, learned embeddings that capture genome-wide interac-
tions can enhance disease predictions at the resolutions of single cells
and tissues.

Moreover, networks composed of small molecule drugs, proteins
and diseases canbe used to model drug-druginteractions, the binding
of drugs totarget proteins, and the identification of drug-repurposing
opportunities. For example, according to a corollary of the local
hypothesis®, the topology of drug combinationsisindicative of syner-
gistic or antagonistic relationships'®. Learning the topology of graphs
withnodesrepresenting drugs, proteins and diseases canimprove pre-
dictions of candidate drugs, the identification of potential off-target
effects, and the prioritization of novel drug combinations.

Proteins

Graph representation learning has been widely used to model pro-
teins and produce new protein designs by optimizing over the input
space (such as amino acid sequences) of a predictive model, and to
find proteins that satisfy the design criteria (such as having specific
protein functions'®*'**). Specifically, the inductive ability of graph
convolutional networks (GCNSs) to generalize to data points unseen
during modeltraining, and to generate new data points fromscratch by
decodinglatent representation from the embedding space, has enabled
the discovery of new molecules, interactions and functions'©%9>%¢,

Computationally elucidating protein structure has been an
ongoing challenge®. Because proteins are folded into complex 3D
structures, they canbe represented as graphs. For example, a contact
distance graph canbe constructed where the nodes are individual resi-
dues and the edges are determined by a physical distance threshold'”".
Edges canalso be defined by the ordering of amino acidsin the primary
sequence'”. Additionally, spatial relationships between residues (such
as distances and angles) may be used as features for edges'.

Protein structures can be modelled by capturing dependencies
in their sequences of amino acids (for example, by applying GNNs to
learn the local neighbourhood structure of each node) to generate
protein embeddings'®®'%, Concretely, protein embeddings can be
learned by identifying short- and long-range dependencies across
sequences corresponding to their 3D structures, and then used to
predict primary sequences from 3D structures'®. Alternatively, one
can use a hierarchical process of learning atom-connectivity motifs
to capture molecular structure at varying levels of granularity (at the
levels of the motif, connectivity and atoms) in the protein embeddings,
with whichnew 3D structures canbe generated. Thisis a difficult task,
owing to the computational constraints of generalizability across dif-
ferent classes of molecules and of flexibility for awide range of sizes™.
Recent review articles have covered machine learning for molecular
design®'", graph generation'?, the prediction of molecular proper-
ties****, and therapeutic-compound design and generation.

Proteininteractions

Various data modalities, including chemical structure, binding affini-
ties, physical and chemical principles, and amino acid sequences, have
beenintegrated toimprove the quantification of protein interactions™.
GNNs are commonly used to generate representations of proteins
on the basis of chemical features (for example, the locations of free
electrons donors and of proton donors) and of geometric features
(such as distance-dependent curvature) to predict protein-pocket-
ligand interactions and protein-protein interactions™’; to generate
intramolecular and intermolecular residue contact graphs to predict
intramolecular and intermolecular energies, binding affinities and
quality measures for a pair of molecular complexes™*; and to generate
ligand-protein and receptor-protein graphs to predict whether a pair
of residues from the ligand and receptor proteins belongs to aninter-
face'®®. Combining evolutionary, topological and energetic information
about molecules enables the scoring of docked conformations onthe

basis of the similarity of random walks simulated on a pair of protein
graphs (Supplementary Note 3)*.

Owing to experimental and resource constraints, the most
updated networks of protein—proteininteractions are limited in their
number of nodes (proteins) and edges (physical interactions)™. Yet
topology-based methods can capture and leverage the dynamics of
biological systems to enrich existing protein-protein interaction
networks'¢. Some of these methods first apply graph convolutions
to aggregate structural information in the graphs of interest (such
as protein-protein interaction networks and ligand-receptor net-
works), use sequence modelling to learn the dependencies in amino
acid sequences, and then concatenate the two outputs to predict the
presence of physical interactions'®". Interestingly, such concatenated
outputs have been treated as ‘image’ inputs to convolutional neural
networks'”. Similar graph convolution methods can also be used to
remove less credibleinteractions, thereby constructinga morereliable
protein-protein interaction network"s,

Protein functions and cellular phenotypes

Characterizing a protein’s function in specific biological contexts
is a challenging and experimentally intensive task'*'?°. However,
innovations in techniques for the representation of protein struc-
tures and interactions have facilitated the prediction of protein
function'”, especially when leveraging gene ontologies and tran-
scriptomic data.

Gene ontology terms'*”are astandardized vocabulary for describ-
ing molecular functions, biological processes and cellular locations
of gene products'®. They have been built as a hierarchical graph that
GNNs can leverage to learn dependencies of the terms'”, and can also
be directly used as protein-function labels'®'*, In the latter case,
sequence-similarity networks are typically constructed and com-
bined with protein-protein interaction networks, and then protein
features (such as amino acid sequence, protein domains, subcellular
location or gene expression profiles) areintegrated to predict protein
function'®*'?*, Additionally, gene-interaction networks that leverage
transcriptomic data'®'* can capture context-specific interactions
between genes (Fig. 4a).

Other methods of graphrepresentationlearning for the prediction
of protein functioninvolve defining diffusion-based distance metrics
on protein-protein networks for predicting protein function'?; the
use of the theory of topological persistence to compute signatures
of a protein on the basis of its 3D structure'”’; and the application of
TDA to extract features from protein-contact networks created from
3D coordinates™ (Supplementary Note 3). Additionally, an attention
mechanism for protein-sequence embeddings generated by the lan-
guage model BERT (for ‘bidirectional encoder representations from
transformers’) has facilitated the interpretability of the predictions
of such networks'**°,

122

Gene expression

Diseases can be classified according to symptoms, and these can
sometimes be caused by molecular dysfunction resulting from genetic
mutations. Hence, diagnosing many diseases requires knowledge
of alterations in the transcription of coding genes, so as to capture
genome-wide associations driving disease onset and progression.
Methods of graph representation learning allow for the analysis of
heterogeneous networks of multimodal information, from genomic
data to pathophysiology (Fig. 4b).

Approaches that rely solely on gene expression data typically
transform the co-expression matrix into a more topologically mean-
ingful form™**, Gene-expression data can be transformed into a
coloured graph that captures the shape of the data (by using TDA'*
Supplementary Note 3), which then enables downstream analyses
through network-science metrics and graph machine learning. Topo-
logical landscapes present in gene-expression data can be vectorized
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Fig. 4| Representation learning in four areas of biomedicine and healthcare.
a, Cell-type-aware protein-representation learning viamultilabel node
classification. b, Disease classification using subgraphs. c, Cell-line-specific
prediction of interacting drug pairs via edge regression with transfer learning

Patient diagnoses

&

Patient-treatment predictions

across celllines. d, Integration of health data into knowledge graphs to predict
patient diagnoses or treatments via edge regression. Box 2 provides context and
details for each panel. HPO, Human Phenotype Ontology.

and fed into a GCN to classify the disease type'*>. Alternatively, gene
expression data can be used directly to construct networks of genes
and diseases that are then input into a joint matrix factorization and
aGCNto draw disease—gene associations, akin to arecommendation
task™'. Additionally, applying GCNs, variational autoencoders and
generative adversarial networks jointly to gene-correlation networks
(initialized with a subset of gene-expression matrices) can generate
disease networks with the desired properties™*.

Because gene-expression data can be noisy and variational, the
co-expression matrices can be fused with existing biomedical networks

(for example, networks of gene-ontology annotations and of pro-
tein—-protein interactions), and the resulting graph fed into graph
convolutional layers™ ™, Doing so has enabled more interpretable
disease-classification models (such as models weighting gene interac-
tions onthe basis of existing biological knowledge). However, models
trained solely on gene-interaction networks are unable to capture all
gene-regulation activities™, To this end, methods of graph represen-
tation learning, such as GNNs, canlearn robust and meaningful repre-
sentations of molecules (even with anincomplete interactome'”") and
inductively infer new edges between pairs of nodes'.
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BOX2

Learning multiscale representations with graphs

Proteins and celltypes

Dataset

Single-cell transcriptomic and proteomic data capture the
heterogeneity of gene expression across diverse types of cells
GNNs can help inject cell-type-specific gene-expression information
into cell-type-specific gene-interaction networks™*?'®?"®, To do so, a
global protein-interaction network** is needed.

216,217

Learning task

On a global gene-interaction network, multilabel node classification
can be performed to predict whether a gene is activated in a
specific cell type on the basis of scRNA-seq experiments. If N cell
types are identified in each experiment, each gene is associated
with a vector of length N. Given the gene interaction network and
label vectors for a select number of genes, the task is to train a
model that predicts every element of the vector for a new gene such
that predicted values indicate the probabilities of gene activation in
various cell types (Fig. 4a). To enable inductive learning, nodes (that
is, genes) are split into training, validation and test sets such that the
model can generalize to genes that it has not seen.

Impact

Generating gene embeddings that consider differential expression

at the cell-type level can enable predictions at single-cell resolution,
with considerations for factors including disease and cell states,

and temporal and spatial dependencies'*®*?. The implications of

such cell-type-aware gene embeddings extend to the prediction

of cellular function and to the identification of cell-type-specific
disease features'“’. For example, quantifying ligand-receptor
interactions using single-cell-expression data has predicted
intercellular interactions in tumour microenvironments (in particular,
via CellPhoneDB*" or NicheNet*??). Experimental validation of the
predicted cell-cell interactions in distinct spatial regions of tissues and
tumours showed the importance of spatial heterogeneity in tumours®.
Unlike methods for standard representation learning, GNNs can
explicitly model dependencies (such as physical interactions) between
proteins as well as single-cell gene expression?*?%,

Diseases and phenotypes

Dataset

Physicians use a standardized vocabulary of symptoms (that is,
phenotypes) to describe human diseases. Hence, diseases can

be modelled as collections of associated phenotypes and used to
diagnose patients on the basis of the symptoms that they present.
In a graph built from the standardized vocabulary of phenotypes
(the Human Phenotype Ontology?®), the nodes represent
phenotypes and the edges indicate hierarchical relationships
between them. A disease described by a set of its phenotypes
thus corresponds to a subset of nodes in the ontology, and thus
forms a subgraph of it (a subgraph can contain many disconnect
components dispersed across the entire graph').

Learning task

Given a dataset of subgraphs and disease labels for a select number
of them, the task is to generate an embedding for every subgraph
and to use the learned subgraph embeddings to predict the disease
most consistent with the set of phenotypes that the embedding
represents’ (Fig. 4b).

Impact

Modelling diseases as rich graph structures (such as subgraphs)
enables a more flexible representation of diseases than relying

on individual nodes or edges. Graph structures can better resolve
complex phenotypic relationships and improve the differentiation of
related diseases or disorders.

Drugs and drug combinations

Dataset

Combination therapies are increasingly used to treat complex
and chronic diseases. However, it is experimentally intensive and
costly to evaluate whether two or more drugs interact

with each other and whether the combination leads to effects that
are different from the additive effects of the individual drugs.
Graph representation learning can leverage perturbation
experiments performed across cell lines to predict the

responses, to drug combinations, of unseen cell lines with
mutations of interest (in particular, disease-causing mutations).

A multimodal network of protein-protein, protein-drug, and
drug-drug interactions where nodes are proteins and drugs,

and edges of different types indicate physical contacts

between proteins, the binding of drugs to their target proteins, and
interactions between drugs (such as synergistic effects, where the
effects of the combination are different from the contributions

of the effects of each drug)*****’ can be constructed for every

cell line, yielding a collection of cell-line-specific

networks?? (Fig. 4c).

Learning task

From the drug-protein network of a single cell line, one can predict
whether two or more drugs are interacting®®. Concretely, nodes of a
drug-protein network are embedded into a compact space such that
distances between node embeddings correspond to the similarities
of the local neighbourhoods of the nodes. The learned embeddings
can then be used to decode drug-drug edges and to predict the
probabilities of two drugs interacting. Transfer learning can then be
applied to leverage the knowledge gained from one cell-line-specific
network so as to accelerate the training and to improve the accuracy
of the model across other cell-line-specific networks?® (Fig. 4c).
Specifically, a model can be developed by using a drug-protein
network for one cell line, and reused on the drug-protein network of
any other cell line.

Impact

Standard methods are unable to capture topological dependencies
between drugs and targets, and most predictive models for drug
combinations do not consider the tissue specificity or cell-line
specificity of drugs. Because the effects of drugs on the human
body are not uniform, it is crucial to account for such anatomical
differences. Additionally, the ability to prioritize candidate drug
combinations in silico could reduce the cost of developing and
testing them experimentally.

Personalized health information fused with knowledge graphs
Dataset

Robust methods that can inject biomedical knowledge into
patient-specific information are needed to produce actionable and
trustworthy predictions?®. Because EHRs can also be represented
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(continued from previous page)

by networks, networks of EHRs can be fused with biomedical
networks, thus enabling graph representation learning to make
predictions on patient-specific features. An example is a knowledge
graph, where nodes and edges represent different types of
biological entities and their various relationships. Examples of

such relations are ‘upregulate / downregulate’, ‘treats’, binds’,
‘encodes’ and ‘localizes”. To integrate patient data into a network, a
distinct metanode is created to represent each patient, and edges
are added between the patient’s metanode and its associated
biomedical-entity nodes (Fig. 4d).

Single-cell transcriptomics
Single-cell RNA sequencing (scRNA-seq) datalend themselves tograph
representation learning for the modelling of cellular differential pro-
cesses"*'* and disease states'*?. A predominant approach to analyse
scRNA-seq datasetsis to transform theminto gene-similarity networks,
(suchas gene co-expression networks) or into cell-similarity networks (by
correlating gene-expression readouts across individual cells). Applied
to such networks, graph representation learning can, for instance,
impute scRNA-seqdata>"**and predict cell clusters™*'*. Cell-similarity
graphs have also been created using autoencoders by first embedding
gene-expression readouts and then connecting genes based on how
similar theirembeddings are'**. Alternatively, variational graph autoen-
coders produce cell embeddings and interpretable attention weights,
indicating what genes the model attends to when deriving anembedding
for agiven cell**. Beyond GNNs and graph autoencoders, learning a
manifold over a cell-state space can quantify the effects of experimental
perturbations'. To this end, cell-similarity graphs are constructed for
control samples and treated samples, and used to estimate the likeli-
hood of acell population being observed underagiven perturbation'.
Spatial molecular profiling can measure both gene expression
at the cellular level and the location of cells in tissue'*’. As a result,
spatial transcriptomics data can be used to construct cell graphs'*,
spatial gene-expression graphs'*’, gene-co-expression networks or
molecular-similarity graphs®. Creating graphs of cell neighbourhood
and of spatial gene expression requires a distance metric, as edges are
determined on the basis of spatial proximity, whereas graphs of gene
co-expression and molecular similarity need a threshold applied on
the gene-expression data®. From such networks, methods of graph
representationlearning produce embeddings that capture the network
topology and that can be further optimized for downstream tasks.
Forinstance, a cell-neighbourhood graph and a gene-pair expression
matrix enable GNNs to predict ligand-receptor interactions'. In fact,
because these interactions are directed, they could be used to infer
causaliinteractions of previously unknown ligand-receptor pairs™**°,

Small-molecule drugs

Moderndrugdiscovery requires elucidating the chemical structure of
acandidate drug, identifying its drug targets, quantifying its efficacy
and toxicity, and detecting its potential side effects"'***>, Because
such processes are costly and time consuming, drug-discovery pipe-
lines leverage in silico approaches. However, cross-domain expertise
isnecessary to develop a drug with optimal binding affinity and opti-
mal specificity to biomarkers, maximal therapy efficacy, and minimal
adverse effects. Therefore, it is critical to integrate chemical-structure
information, proteininteractions and clinically relevant data (such as
indications and reported side effects) into predictive models for drug
discovery and drugrepurposing. Graph representation learning canbe
used to characterize drugs at the systems level without patient datato
make predictions aboutinteractions with other drugs, protein targets,
side effects and diseases®s #0812,

Learning tasks

Node embeddings for each patient can be learned while predicting
(via edge regression) the probability of a patient developing a specific
disease or of a drug effectively treating the patient’ (Fig. 4d).

Impact

Most networks do not consider patient data, which can prevent
robust predictions of a patient’s conditions and their potential
responsiveness to particular drugs. The ability to integrate patient
data with biomedical knowledge may address this.

As with proteins, small molecules are modelled as 2D and 3D
molecular graphs such that nodes are atoms and edges are bonds.
Eachatomand bond mayinclude features (such as atomic mass, atomic
number andbond type) thatare added to the model’*"**. Edges canalso
beadded to indicate the spatial distance between each two atoms® or
information on bond angles and rotations can be incorporated into
the molecular graph®°.

Representing molecules as graphs has improved predictions on
various quantum-chemistry properties. Simplistically, GNNs aggregate
information from neighbouring atoms and bonds to learn the local
chemistry of eachatom™>. For example, generating representations of
the atoms, distances and angles has allowed the identification of the
angles and directions of the interactions between atoms®’. Producing
atom-centred representations based on a weighted combination of
their neighbours’ features (via an attention mechanism) can be used
to model interactions among reactants and to predict the outcomes
of thereactions™".

Alternatively, molecular graphs have been decomposed into a
‘junctiontree’, where each node represents a substructure in the mol-
ecule. Thisaims to learn representations of both the molecular graph
and the junction tree, for the generation of new molecules with desir-
able properties”. In fact, iteratively editing fragments of amolecular
graph during training has improved predictions of high-quality drug
candidates targeting a protein of interest'.

Drug-drug and drug-targetinteractions

A drug’s binding affinity and specificity to its target determine the
drug’s effectiveness and potential for off-target effects**. However,
quantifying these metrics requires labour-intensive and costly experi-
ments***. Modelling the molecular structure of the protein targets
of small molecules as well as their binding affinities and specificities
by using graph representation learning has accelerated the study of
drug-targetinteractions.

Topological data analysis™® and shallow network embedding®’
have been used to learn representations of drugs and targets. Con-
cretely, TDA transforms experimental data into a graph where nodes
represent compounds and edgesindicate alevel of similarity between
them™® (Supplementary Note 3). Methods of shallow network embed-
ding canalsobe used to generate embeddings for drugs and targets by
computing drug-drug, drug-target and target-target similarities"™’.
Non-graph methods have also been used to create graphs that are
then fed into a graph model to generate embeddings. For instance,
the k-nearest-neighbours algorithm is commonly used to construct
drug-similarity and target-similarity networks"®. The resulting embed-
dings are fed into downstream machine-learning models.

Predictions of drug-drugand drug-targetinteractions have been
improved by fusing chemical structures, target sequences and clinical
implications. For example, attention mechanisms have been applied
ondruggraphs, with chemical structures and side effects as features,
to generate interpretable predictions of drug-drug interactions'’.

156
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Additionally, two separate GNNs may be used to learn representa-
tions of protein graphs and small-molecule graphs, to predict drug-
target affinity’®. And protein-structure representations generated
by graph convolutions have been combined with protein-sequence
representations (using shallow network embedding or convolutional
neural networks) to predict the probability of small-molecule-protein
interactions'® %%,

Drug-disease associations and disease biomarkers

Part of the drug-discovery pipeline involves minimizing any adverse
events®**. However, the experiments required to measure drug-drug
interactions and toxicity are costly and face acombinatorial explosion
problem®. By considering gene-expression data, gene ontologies, drug
similarity and other clinically relevant data regarding side effects and
indications, methods of graph representation learning enable the in
silico modelling of drug action, allowing for a more efficient ranking
of candidate drugs for repurposing.

Drugand disease representations have been learned on homoge-
neous graphs of drugs, diseases or targets. For instance, medical terms
in subject headings may be used to construct a drug-disease graph,
from which latent representations of drugs and diseases are learned
using various graph-embedding algorithms (such as DeepWalk and
LINE; ref. '%). TDA (Supplementary Note 3) has also been applied for
the separate construction of graphs of drugs, targets and diseases;
representations of such entities are learned and optimized for down-
stream prediction'®®,

Recent methods have fused multimodal datato create heterogene-
ous graphs. For example, neighbourhood information can be aggre-
gated from heterogeneous networks of drugs, targets and diseases,
to predict drug-target interactions'”. Protein—protein interaction
networks have also been combined with genomic features to pre-
dict drug sensitivity using GNNs'®®, Overall, approaches integrating
cross-domain knowledge as a vast heterogeneous network or into the
model’s architecture may better predict drug action (Fig. 4c).

Applicationsin healthcare

Patient records, such as medicalimages and EHRs, canbe represented
as networks, and can be incorporated into networks of proteins, dis-
eases and drugs. For example, following the local hypothesis, the
shared-components hypothesis and the disease-module hypothesis®,
patients withrare diseases probably have similar phenotypesand even
share disease mechanisms if they are represented by nodes that have
common neighbours and topology'**'7°.

Methods of graph representation learning can, in principle, inte-
grate patient records with molecular, genomic and disease networks
for personalized predictions. Graph representation learning has also
been used to fuse multimodal knowledge with patient records. Here
we highlight two types of patient data that have been successfully
integrated using deep graph learning: histopathology images®"""">
and EHRs"*"*,

Histopathology images

Whole histopathology slides and other medical images can typically
be converted into spatial graphs, where nodes represent the cells in
theimage and edges indicate that a pair of cells are adjacent in space.
Deep graph learning can then detect subtle signs of disease progres-
sionintheimages, also by integrating other modalities (such as tissue
localization” and genomic features®).

Cell-tissue graphs generated from histopathology images can
encode the spatial context of cells and tissues for a given patient.
Information on cell morphology and tissue microarchitecture can
be aggregated into cell graphs to, for instance, grade cancer histol-
ogy images (for example, using GNNs)*7*"7%, An example aggrega-
tion method involves pooling with an attention mechanism to infer
relevant patches in the image'®. A hierarchical GNN can then learn

relevant representations of cellmorphology and cell-cellinteractions,
tissue morphology and the spatial distribution of cells, cell-to-tissue
hierarchies, and the spatial distribution of cells in the tissue, as all of
these can be captured in a cell-to-tissue graph'”. Because interpret-
abilityis critical for models that generate patient predictions, post-hoc
graph-pruning optimization may be performed onacellgraph gener-
ated from a histopathology image, to define subgraphs that explain
the original cell-graph analysis'”’.

Methods of graph representation learning can also be used
for classifying other types of medical images. For instance,
GNNs can model relationships between lymph nodes to compute
the spread of lymph-node gross tumour volume on the basis of
computed-tomography images'®’. GNNs have been used to classify the
progression of Alzheimer’s disease from magnetic resonance images
thatare converted into graphs™'*3>, GNNs can also leverage relational
structures, such as similarities among chest X-rays, toimprove down-
stream tasks, such as disease diagnosis and localization'®*. Moreover,
GNNs have been used to classify patients according to colon-cancer
stage'® after TDA had been applied to generate graphs from whole-slide
images of tissues from various sources (Supplementary Note 3).

With spatial gene-expression graphs (weighted and undirected)
and corresponding histopathology images, gene-expression informa-
tion can be aggregated to generate embeddings of genes that could
then be used to investigate spatial domains (to differentiate between
cancer and noncancer regions in tissues, for instance)'*®. Because
multimodal data enables more robust predictions, GNNs have been
applied tospatial graphs of cells from histopathology images alongside
genomicand transcriptomic data, to predict treatment responses and
resistance, histopathology grading, and patient survival®,

Patientrecords

EHRs are typically represented by ICD (International Classification
of Disease) codes*""*, The hierarchical information inherent to ICD
codes (medical ontologies) lendsitselfto the creation of arich network
of medical knowledge. In addition to ICD codes, medical knowledge
cantakethe form of many datatypes, including symptoms, molecular
data, druginteractions and side effects. By integrating patient records
into networks, graph representation learning can generate predictions
tailored to individual patients.

Methods thatembed medical entities, including EHRs and medical
ontologies, leverage theinherently hierarchical structure of knowledge
graphs of medical concepts'’. For example, low-dimensional embed-
dings of EHR data can be generated by separately considering medical
services, doctors and patients in shallow network embeddings and
GNNs'®#1%_ Alternatively, attention mechanisms may be applied on
EHR data and medical ontologies to capture parent-child relation-
ships7>?91! Rather than assuming a certain structure in the EHRs,
agraph convolution transformer can learn hidden EHR structures™.

EHRs also have underlying spatial and temporal dependencies'
that many recent methods have leveraged to performtime-dependent
prediction tasks. A mixed pooling multi-view self-attention
autoencoder can generate patient representations for predicting
either a patient’s risk of developing a disease in a future visit, or the
diagnostic codes of the next visit'”>. Combined long short-term and
GNN models have been used to represent patient-status sequences
and temporal-medical-event graphs, respectively, to predict
future prescriptions or disease codes'**'”>. Alternatively, a patient
graph can be constructed on the basis of patient similarities, and
patient embeddings learned by a long short-term model with a GNN
architecture are then optimized to predict patient outcomes'*. Fur-
thermore, a short-term GCN” has been designed to leverage the
underlying spatial and temporal dependencies of EHR data to gener-
ate patient diagnoses'*.

EHRs are often supplemented with other modalities, such as dis-
eases, symptoms, molecular dataand druginteractions™*>*"1°% (Fig.4d).
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A probabilistic knowledge graph of EHR data, which include medical
history, drug prescriptions and laboratory examination results, has
been used to explore semantic relations between EHR entitiesin a shal-
low network embedding method'”’. Meta-paths may alternatively be
exploitedinan EHR-derived knowledge graph to leverage higher-order
and semantically important relations for disease classification’*®. Node
features for drugs and diseases can beinitialized using Skip-gram and
then a GNN leveraging multilayer message passing can be applied to
predict adverse drug events'”. Moreover, models combining recurrent
neural networks and GNNs have been applied to EHR data integrated
with drug-disease interactions to better reccommend combinations

of medications®®..

Outlook

Powered by network principles founded on decades of research, deep
learning on graphs is poised to address major gaps in biology and
medicine. Graph representation learning has provided insights into
the structure and function of proteins and small molecules, captured
disease-associated transcriptional changes (at single-cell resolution
and considering the spatial context), and enabled new analyses via the
fusion of biomedical knowledge and patient information.

Asgraphrepresentationlearning has aided the mapping of geno-
typesto phenotypes, leveraging it for fine-scale mapping of genetic var-
iants appears promising?*?. By re-imagining genome-wide-association
studies and expression-quantitative-trait-loci studies*** as networks,
biologically meaningful modules can be discovered that highlight key
genes involved in the underlying mechanisms of a disease**. Alterna-
tively, network propagation canbe seeded with quantitative-trait-locus
candidate genes®”. Because graphs can model long-range depend-
encies or interactions, they can also model chromatin elements
and the effects of their binding to regions across the genome”*>*°¢,
Three-dimensional chromosomal structures could be reconstructed
by predicting the 3D coordinates of nodes derived from a Hi-C con-
tact map®””. Graph representation learning for the analysis of spatial
molecular-profiling data will continue to expand. For instance, with
causal GNNs, one may be able to better capture changes in expres-
sion levels observed in scRNA-seq data over time or as a result of a
perturbation?%,

Effective integration of healthcare data with molecular, genomic,
disease and drug data can help generate more accurate and inter-
pretable predictions about biological systems underlying health and
disease’’. Because of the utility of graphs, there has been a major
push togenerate knowledge graphs that synthesize and model multi-
scale and multimodal data, from genotype-phenotype associations
to population-scale epidemiological dynamics. In public health,
spatial and temporal networks could model space-dependent and
time-dependent observations (such as disease states or susceptibility
toinfection”’) to spot trends, detect anomalies and interpret temporal
dynamics.

Importantly, as algorithms for graph representation learning are
increasingly employed inbiomedicine and healthcare, it is essential to
ensure that the representations are explainable?’, fair”? and robust?”,
and that the algorithms are revisited to minimize health disparities®
and to take into account new information on algorithmic biases.
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