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This Perspective explores the application of machine learning toward improved diagnosis and
treatment.We outline a vision for howmachine learning can transform three broad areas of biomed-
icine: clinical diagnostics, precision treatments, and healthmonitoring, where the goal is tomaintain
health through a range of diseases and the normal aging process. For each area, early instances of
successful machine learning applications are discussed, as well as opportunities and challenges
for machine learning. When these challenges are met, machine learning promises a future of
rigorous, outcomes-based medicine with detection, diagnosis, and treatment strategies that are
continuously adapted to individual and environmental differences.
Machine learning leverages sophisticated algorithms operating

on large-scale, heterogeneous datasets to uncover useful pat-

terns that would be difficult or impossible for even well-trained

individuals to identify. There already are many applications of

this approach throughout science and society ranging from

game playing (Silver et al., 2018), to product recommendations

(Batmaz et al., 2019), to controlling self-driving cars (Bojarski

et al., 2016). In biomedicine, work in the human genome project

(Venter et al., 2001), efforts in cancer omics (e.g., The Cancer

Genome Atlas [Tomczak et al., 2015], the International Cancer

Genome Consortium [Zhang et al., 2019], and the Clinical Pro-

teomic Tumor Analysis Consortium [Ellis et al., 2013]), and

numerous international machine learning competitions such

as DREAM challenges (Saez-Rodriguez et al., 2016; Sage Bio-

networks, 2020) and the Critical Assessment of Genome Inter-

pretation (Andreoletti et al., 2019) have shown the power of this

approach. The ability to collect and analyze large datasets

related to medical treatments and outcomes promises to trans-

form medicine into a data-driven, outcomes-oriented discipline

with profound implications for disease detection, diagnosis,

and treatment. Collection of molecular and phenotypic data

has become pervasive and includes genomic testing for

personalized treatment of cancer, high-resolution two- and

three-dimensional anatomical imaging of organs, histological

analyses of tissue biopsies, and smart watches that monitor

heart rates and notify wearers of irregularities (Shilo et al.,

2020). These and many other collected data provide the raw

material for a future of early, more accurate diagnoses, person-

alized treatments, and ongoing monitoring in support of overall

health.

Machine learning will help realize a future of improved health

care by unlocking the potential of large biomedical and patient

datasets. Early uses of machine learning in diagnosis and treat-

ment have shown promise to diagnosis breast cancer from X-

rays (McKinney et al., 2020; Wu et al., 2019), discover new anti-

biotics (Stokes et al., 2020), predict onset of gestational diabetes

from electronic health records (Artzi et al., 2020), and identify

clusters of patients that share a molecular signature of treatment
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response (Zitnik et al., 2019). Automated pattern recognition

through machine learning is essential due to the enormity and

complexity of biomedical data;manual analysis is both inefficient

and untenable. Equally important, many human diseases involve

a complex constellation of changes that occur dynamically and

vary from patient to patient. Understanding this complexity re-

quires analysis of large-scale heterogeneous data to identify

novel patterns that, after rigorous evaluation, can be used for

diagnosis and treatment. Machine learning, then, can assist

biomedical scientists and medical professionals by identifying

and summarizing meaningful patterns from large datasets (Raj-

komar et al., 2019). Careful evaluation of the patterns found

and predictions made by machine learning applications in diag-

nosis and treatment is essential. ‘‘Ground truth’’ data, in which

associations between data and outcome are known, can be

used to rigorously evaluate the performance of novel algorithms.

Such evaluation data may be quantitative, such as biomarker

reduction on treatment, or more qualitative, such as overall pa-

tient health. It is also important to appreciate that ground truth

may change depending on individual characteristics such as

age, gender, and environmental exposures.

Recognizing this, there are a growing number of research pro-

grams designed to collect and organize large-scale datasets

linking variables to health status, which can be used to train

and evaluate machine learning approaches. Programs in cancer

that aggregate molecular profiles from experimental model sys-

tems or patient samples together with diagnostic, prognostic,

and therapeutic responses provide examples of these valuable

data repositories. For example, the Cancer Dependency Map

(Tsherniak et al., 2017) has collected multimodal molecular pro-

files, drug response, and genetic viability data on more than

1,000 cancer cell lines. The AACR Project GENIE (AACR Project

GENIE Consortium, 2017) has collected genomic profiles and

clinical data for more than 19,000 patients, and the ASCO Can-

cerLinQ is building a similar database of hundreds of thousands

of patients. Coupled with advanced algorithms, such programs

have the potential to transform our understanding of diseases

and improve our ability to predict disease outcomes.
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Table 1. Key Concepts in Machine Learning

Concepts Definition

Supervised,

unsupervised,

and semi-

supervised

learning

Supervised learning predicts labels or

classes on future data based on past data

that includes labels/classes. Unsupervised

learning identifies structure, usually

clusters, among unlabeled data. Semi-

supervised learning first performs

unsupervised learning, and humans label

structures found from unsupervised

learning.

Classification

and regression

Both are supervised learning methods.

Classification predicts discreet categories

such as normal versus diseased while

regression predicts real-valued outputs

such as response to therapy.

Ensemble

learning

Ensemble methods build many models and

use the average of all models to produce

predictions. Common ensemble

approaches include random forests,

gradient-boosting, and stacking/meta-

ensembles.

Deep learning Multi-layer artificial neural networks that

can learn complex non-linear functions.

Very useful for unstructured data such as

images, speech, or text but typically do not

provide insights in to the aspects of the data

that are driving the functions.

Bayesian

learning

Methods that combine prior knowledge in

addition to data to perform machine

learning.

Dimensionality

reduction

Reduces the number of attributes or

features of a dataset by selecting important

features or combining features to capture

variance in a dataset. Often used to improve

performance of machine learning models

and to aid visualization.

Federated

learning

Approaches for incrementally learning from

data distributed in multiple locations and

which cannot be combined into a single

dataset. Federated learning is useful when

data are located in multiple clinical systems

or when learning from sensitive

personal data.
Machine learning is a subdiscipline of artificial intelligence, and

the main conceptual approaches in machine learning are sum-

marized in Table 1. Whereas artificial intelligence includes all

methods for enabling computers to display human-like under-

standing and intelligence, machine learning is focused specif-

ically on developing algorithms to learn from data. General clas-

ses of machine learningmethods include: (a) supervised learning

in which data groups are associated with a specific outcome;

categorical data (e.g., disease versus normal) rely on classifica-

tion methods whereas continuous values (e.g., strength of

response to therapy) are used in regression methods, (b) unsu-

pervised or semi-supervised methods to cluster data into

discrete groups that can then be manually labeled and associ-

ated with outcome, (c) ensemble learning, where results from
multiple computational models are combined to produce a final

prediction, can lead to more accurate predictions by enabling

models to generalize to new data better (d) deep learning, which

uses artificial neural networks, a formalization modeled on the

human brain, to recognize patterns or associations in the data,

is especially useful when working with unstructured data such

as images, speech, and text, and (e) Bayesian learning, in which

prior knowledge is encoded into the learning process and is

especially useful in data-poor situations.

There are two complementary approaches that can be used

with any of these learning methods and are especially useful

for biomedical applications. Many biomedical datasets have a

large number of features (dimensions), and the number of fea-

tures may exceed the number of data points. Dimensionality

reduction can help improve the performance of machine learning

approaches by selecting a subset of relevant attributes of a data-

set or combining attributes into a smaller number that capture

variability in a dataset. Reducing the dimensions of a dataset is

also useful for visualizing data or model predictions. When

data are distributed across multiple sites and cannot be moved

to create a single dataset for machine learning, federated

learning approaches are used to learn incrementally across all

the data (Kone�cný et al., 2016; Yang et al., 2019). Federated

learning is especially important in many biomedical applications

where data contain sensitive or protected health information that

cannot be easily shared. Most of these approaches are concep-

tually mature but are now finding increased use as structured

biomedical data become available and as computer technology

becomes sufficiently powerful to enable discovery of subtle but

important patterns in large datasets. A recent review provides

a brief tutorial on machine learning approaches in the life sci-

ences (Camacho et al., 2018). The application goals and avail-

able data dictate appropriate machine learning methods to

use. Table 2 lists prototypic examples of machine learning appli-

cations for medical diagnosis and treatment.

We expect that applications of machine learning will have a

profound impact on many aspects of health management as

computers optimized for machine learning increase in power

and as infrastructure for accurate data collection and curation

becomes more widely deployed. Immediate biomedical oppor-

tunities summarized in the following sections include earlier

and more accurate disease detection, better diagnosis, and

more durable and tolerable treatments. Of course, the accuracy

of the underlying ‘‘learned’’ relationships depends on the

accuracy and magnitude of the data on which learning is based.

This can be enhanced substantially by widely deploying stan-

dardized electronic medical record systems designed specif-

ically to support machine learning and by supporting their

widespread use. Acquisition of data ‘‘at home’’ using smart-

phones, commercial home assistant devices (e.g., Amazon

Echo, Google Home), and other electronic devices will further

enhance robust biomedical machine learning. Looking ahead,

we envision these trends merging to enable outcomes-based

personalizedmanagement of patient health (Figure 1) using algo-

rithms that increase in accuracy as the quantity and quality of

data grows.

In this Perspective, we outline a vision for how machine

learning can be applied to make critical advances in
Cell 181, April 2, 2020 93
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biomedicine. We focus on three biomedical areas: improved

clinical diagnostics, precision treatment, and health manage-

ment and monitoring. For each area, we describe opportunities

for machine learning applications to enable new insights or

improve on current state-of-the-art approaches, discuss suc-

cessful early applications ofmachine learning, and highlight un-

met needs to be addressed.We conclude by identifying several

cross-cutting challenges that, if solved, will help realize the full

potential of machine learning in biomedicine.

Improved Diagnostics from Clinical Imaging and
Molecular Tests
Technological advances in clinical testing are generating or-

ders ofmagnitudemore data than tests in the past. High-fidelity

imaging tests now produce large two-, three-, or four-dimen-

sional (the fourth dimension being time) images of tissue and

organs, and molecular tests can provide assessment of hun-

dreds or even thousands of genes and proteins. Machine

learning is both essential and ubiquitous for automated analysis

of diagnostic features in these data that are strongly associated

with disease type, status or response to treatment.

The use of deep learning to extract meaning from biomedical

images is one of the most active areas of current research.

Several recent publications have shown that computer-aided

detection (CAD) software using machine learning can interpret

radiologic images on par with medical professionals indicating

the power of this approach. For example, deep learning-based

CAD software was able to detect diabetic retinopathy at high

levels of accuracy (Gulshan et al., 2016) and to retrospectively

identify invasive and in situ breast cancer of all grades similar to

radiologists (McKinney et al., 2020; Wu et al., 2019). A recent

review found that deep learning-based approaches performed

as well as medical professionals across a range of medical im-

aging diagnostic tasks, although many of these studies are

small and have yet to perform a prospective evaluation (Liu

et al., 2019). Importantly, deep learning approaches benefit

from large datasets and will increase continually in accuracy

as the sizes of the training datasets grow.

Molecular assays can identify genetic mutations and quantify

gene expression levels and protein abundance from a variety of

samples, including blood, saliva, and tissue. Machine learning

has the potential to increase the utility of these data by discov-

ering complex sets of biomarkers associated with various dis-

ease states, which ultimately can inform patient outcome and

identify effective treatment strategies. Some examples from

cancer biology include using DNA methylation (Kang et al.,

2017) and nucleosome positioning (Heitzer et al., 2019) from

blood to predict tumor tissue of origin, quantifying cellular

pathway activation levels in biopsies and other tissue samples

(Way and Greene, 2019; Way et al., 2018), predicting genomic

features of brain cancers using magnetic resonance images

(Chang et al., 2018a), and forecasting cancer patient outcomes

based on multi-omics (Chaudhary et al., 2018) or imaging-

omics integrations (Mobadersany et al., 2018). Beyond cancer,

machine learning has been used to identify individuals with

sleep deprivation through analysis of mRNA in the blood, in-

forming how sleep insufficiencies negatively affect health (La-

ing et al., 2019). Through integration of multiple data types



Figure 1. How Machine Learning Applications Could Help Individuals Maintain Health
At home, machine learning may help in early detection of disease, monitoring response to treatment, and adherence to treatment regimens. In the clinic or
hospital, machine learning may aid medical professionals to diagnosis and tune treatment for an individual patient. The dashed line shows how a patient moves
between home and clinical settings and how machine learning can help at each step to maintain health.
and biomarkers, machine learning models are likely to be sub-

stantially more accurate than current practice, which is often

limited to a few markers and reflects only a narrow view of com-

plex diseases.

Joint human-computer diagnostic approaches such as those

illustrated in Figure 1, are likely to become common because

they take advantage of the strengths of both humans and com-

puters. In this collaborative approach, physicians will make a

final diagnosis by integrating all available information, including

that provided by machine learning systems (Ahuja, 2019). Ma-

chine learning systems will have a key role by automating routine

diagnosis, flagging challenging cases that require more human

input, and providing additional information useful inmaking diag-

noses (e.g., Ardila et al., 2019). Moreover, machine learning sys-

tems may use different features than medical professionals to

make diagnoses, though care will be required to assess the bio-

logical utility of such features. As a result, approaches that inte-

grate knowledge from both medical professionals and advanced

algorithms will lead to improved diagnoses. Ensuring that ma-
chine learning software is transparent will be critical before wide-

spread deployment and adoption. ‘‘Transparency’’ in this

context includes description of the optimized objectives,

strengths, quantitative performance, and limitations of a partic-

ular algorithm (Cai et al., 2019) as well as the procedures

used to validate the algorithm. These attributes will help medical

professionals decide when and how to use machine learning ap-

plications to obtain valid results and improve decision making.

Applications that use machine learning can help build trust in

the system and facilitate deeper understanding of the underlying

biological mechanism of disease by explaining predictions, such

as by highlighting the most important features used (Ching et al.,

2018; Litjens et al., 2016).

As more advanced clinical testing technologies are coupled

with machine learning, it will be important to consider tradeoffs

between disease detection rates, patient outcomes, and other

factors that impact patient health and quality of life. Disease

detection rates may increase with the use of machine learning

technologies, and disease-specific research will be needed to
Cell 181, April 2, 2020 95



differentiate indolent versus fatal disease to avoid over-treat-

ment and to identify disease subtypes in order to guide the selec-

tion of the most effective treatments for each subtype. Careful

framing of clinical goals that can be connected to evaluation

and validation metrics will ensure that machine learning im-

proves patient care and overall health (Chen et al., 2019b).

Precision Treatment through Multiscale Modeling and
Expert Guidance
One of the most promising application areas for machine

learning is precision medicine, where a patient receives medical

care and treatment tailored to their personal disease profile. Pre-

cision oncology, where the goal is to prescribe cancer treat-

ments based on tumor molecular characteristics, is a prime

example of the challenges and opportunities for machine

learning in precision medicine. In current practice, individual mo-

lecular markers such as somatic mutations and gene expression

levels are often used to inform treatment selection. However, re-

sponses are often highly variable between patients due to differ-

ences at other genomic and epigenomic loci as well as anatomic

disease distribution (Brown et al., 2019; Kobayashi and Mitsu-

domi, 2016; Rotow and Bivona, 2017). Further complicating pre-

cision oncology is that there are hundreds of potential drugs, and

not every combination can be tested for every disease profile

(Gerstung et al., 2017; Kurnit et al., 2018).

One way that machine learning can help overcome these chal-

lenges is through the development of multifactorial predictive

models that are robust against individual diversity. For example,

single-purpose models have been built to forecast the functional

consequences of biological changes, such as how geneticmuta-

tions influence splicing and gene expression (Xiong et al., 2015)

as well as transcription factor binding (Chen et al., 2019a). Ma-

chine learning models have also been built to predict drug

response in cancer cell lines (Chang et al., 2018b), transfer pre-

dictions from cell lines to patient tumors (Chiu et al., 2019), and

forecast patient response to therapies based on clinical

response data (Huang et al., 2018). Future advancements in

modeling for precision therapeutics are likely to operate over

multiple scales and serve multiple purposes. Multiscale

modeling will use large biological datasets to investigate the

growth and development of an organism across diverse tempo-

ral and spatial domains. Already there are computational models

of human-virus interactions (Lasso et al., 2019), cell-cell interplay

such as tumor-immune cell interactions, and even whole cells

(Metzcar et al., 2019; Rahman et al., 2017; Sakamoto et al.,

2018). Eventually, we anticipate that computational models of

organs and entire individuals—so-called ‘‘digital twins’’ (Björns-

son et al., 2019)—will be developed. The goal of digital twins will

be multifaceted, such as predicting the efficacy of different com-

bination therapies that have never been used together and

modeling the impact of disease on different organs.

While multiscale models may become accurate enough that

their predictions can be used directly for treatment, we envision

an intermediate stage in which machine learning approaches

generate a ranked list of suggested therapies that can be used

by expertly trained physicians to help guide treatment decisions.

For instance, patient-derived laboratory models could be used

to test predictions from computational models, with the best-
96 Cell 181, April 2, 2020
performing predictions recommended for use in treatment.

This hybrid approach has many advantages: machine learning

models can dramatically reduce the space of potential treatment

combinations to be considered and identify others that might

otherwise be overlooked. An experimental validation step could

be added to provide additional evidence that a predicted therapy

is likely to be effective.

Precision medicine will also be advanced by using machine

learning to automatically mine and search expert knowledge in

published literature and patient databases (Rajkomar et al.,

2019). Patient databases, usually in the form of electronic health

records (EHRs), represent a rich source of information about

diagnosis, treatment, and treatment response for large patient

cohorts. Early efforts have attempted to use natural language

processing algorithms to mine publications (Dong et al., 2018),

EHRs (Shickel et al., 2018), and clinical reports (Kreimeyer

et al., 2017; Pons et al., 2016) for useful knowledge, such as

biomarker-therapy associations and biological pathways of in-

terest. Other applications have used structured information

from EHRs to predict disease onset (Artzi et al., 2020). Machine

learning will help harness this information and make it useful for

precision medicine through advanced approaches that address

the unstructured nature of data andmetadata in publications and

EHRs. Of course, the EHRmining approach assumes that the in-

formation needed to establish a useful association is accurately

and completely captured. Unfortunately, this is not always the

case, and future work will be needed to increase the utility of

EHR analyses.

Health Management and Monitoring
We envision a shift in how complex diseases are treated, moving

from the goal of a cure to one of disease management. This

comprehensive healthmanagement approachwill strive tomain-

tain health through a range of diseases and the normal aging pro-

cess. Health management is demanding, because it requires

ongoing monitoring of all aspects of health for potential disease,

choosing treatments suited to individual patients, and adapting

treatments based on patient response (Figure 2). Here, machine

learning has a key role to play, largely by integrating many of the

ideas already discussed for diagnosis and treatment into a

continuous learning approach.

Outside of clinical settings, wearable devices and at-home

smart electronic devices provide a new avenue for health man-

agement. These devices can collect large amounts of fine-

grained data on patient health status that can be used by ma-

chine learning applications to suggest one-time actions,

changes in daily activities, or referral to a physician for assess-

ment and testing.Wearable devices now include sensors for mo-

tion, pulse, respiratory rate, body temperature, blood pressure,

oxygen levels, and other biometrics. Prototype applications

show how data from wearables might be useful, including: dia-

betes management (Chang et al., 2016), detection of atrial fibril-

lation (Bumgarner et al., 2018), blood cholesterol monitoring (Fu

and Guo, 2018), early detection of Parkinson’s disease (Lonini

et al., 2018), self-adherence to medications (Car et al., 2017;

Toh et al., 2016), and early warning of heart attack (Sahoo

et al., 2017). Speech-driven home assistants have been used

to detect agonal breathing, an audible biomarker that is an early



Figure 2. Integrating Data and Machine Learning Models for Continuous and Personalized Health Management
Combining data collected from both home (left) and clinical settings (right), or combining predictivemodels built at home and in the clinic, has the potential to lead
to comprehensive and integrated models that support personalized health management. Comprehensive models are more likely to perform well as they
incorporate more information about an individual, and these models have the potential to be applied in the home, clinic, or wherever an individual may be.
sign of cardiac arrest (Chan et al., 2019). In the future, machine

learning software is likely to be used to identify new biomarkers

from wearable and audio sensor data, perhaps by integrating

data across different types of devices. Both traditional super-

vised learning and deep learning are likely to play roles in devel-

oping models from wearable data.

Using machine learning together with data collected from

smartphones provides new opportunities for diagnostics as

well. Deep learning approaches have been applied to analyze

pictures from smartphone cameras to identify different types of

skin cancers (Esteva et al., 2017) and also to diagnose diabetic

retinopathy (Micheletti et al., 2016). Recent studies have found

that sensory data (e.g., voice, tapping, response time, and accel-

erometer data) collected from smartphones and processed

using machine learning can be used to monitor symptoms and

progression of Parkinson’s disease (Arora et al., 2015; Espay

et al., 2016; Ginis et al., 2016; Pereira et al., 2016). These proto-

type applications suggest a role for machine learning where

wearables, home devices, and smartphones are used to capture

all kinds of data, including biometric measurements, photos, di-

etary intake, and even environmental information (i.e., the ‘‘expo-

some’’ [Vermeulen et al., 2020]). By connecting this information

with diagnoses, machine learningwill be used to identify patterns

within the data that suggest a particular diagnosis.

The foundation of health management is the ongoing moni-

toring of individual behavior and body functioning through

home and wearable devices together with readouts from routine

blood sampling. Personalized models of baseline functions and

activity will be built by customizing population-level models
with data collected for each individual. A key advantage of this

approach is that personal baselines can be established and de-

viations from baselines—that may indicate a change in health

status—can be detected. Using personalized models, machine

learning applications will monitor individuals for any changes

from normal and notify individuals when a change requires con-

sult with a medical professional. An interesting possibility along

these lines is suggested by recent work showing that monitoring

of individual internet symptom searches (in essence, self-re-

ported health issues such as weight loss, bronchitis, cough,

chest pain, etc.) coupled with machine-learned tendencies

from many individuals can enable early detection of lung (White

and Horvitz, 2017) and pancreatic (Paparrizos et al., 2016) can-

cers. This could lead to a physician or patient alert system that

recommends medical attention when a more serious issue may

explain the seemingly innocuous symptoms searched for. Of

course, many issues regarding privacy would have to be over-

come to make this possible.

Once in a clinical setting, high-fidelity imaging and molecular

testing will be interpreted by medical professionals with the

help of machine learning to identify noteworthy biomarkers and

make a final diagnosis. Disease diagnoses that require treatment

will use multiscale modeling and automated search results for

similar patients to inform treatment selection.

After diagnosis and treatment, health management begins

again with ongoingmonitoring of individual health. This time, how-

ever, there aremultiple goals that amachine learning systemmust

meet: monitor how the individual is responding to treatment,

watch for any adverse effects, and monitor overall health and
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changes from baseline not accounted for by treatment. Machine

learning will help adapt the initial personalized model to include

the new diagnosis and therapy information, creating an expected

trajectory on treatment that will serve as the new baseline.

Health management across a person’s lifespan will require

data integration and modeling at a level of sophistication and

automation that is only possible with machine learning. Each

step in health management—building personalized models and

using them to monitor for and accurately detect anomalies, aid-

ing physicians in diagnosis and treatment through automated

processing of large datasets and patient databases, and updat-

ing individual models for new diagnoses and treatments—is data

intensive and requires automated pattern recognition of complex

datasets. Health management will also continuously learn as

models will be updated with availability of new data. Two general

approaches for continuous learning are to build new predictive

models or to update existing models, and more work is needed

to understand the strengths and limitations of these approaches

for different applications.

Challenges and Concluding Thoughts
For machine learning to play a transformative role in diagnosis

and treatment, it is necessary to develop high-quality, well-

curated datasets. High-quality datasets have several important

benefits: they improve the predictive power of machine learning

methods while reducing the size of the data needed for training

and the complexity of the learned representations. Famously,

machine learning approaches for image recognition accelerated

when ImageNet (Deng et al., 2009), a corpus of labeled and onto-

logically linked images, was introduced. Similar efforts in

biomedicine are needed across the variety the tasks where ma-

chine learning may be applied.

Creating high-quality datasets for machine learning applica-

tions in diagnosis and treatment will require addressing tech-

nical, legal, and economic issues that often result in siloed

biomedical data that are not standardized. As discussed above,

federated learning provides a technical solution for combining

data among siloed systems because no actual data movement

is necessary and individual privacy can be protected. Wearables

and home devices provide a way to collect accurate data, and

machine learning can be used as a preprocessing step to extract

accurate analytic and clinical data from unstructured sources

such as electronic health records and publications. Legal pro-

cedures must be developed for the secure management and

analysis of private health information (PHI), and community and

legal standards that define the performance of these procedures

must be established. Biomedical institutions and individuals

must be incentivized to engage in data standardization and

sharing. Similarly, insurers, the pharmaceutical industry, and

agencies that support biomedical research must be willing to

invest the infrastructure, data acquisition, and data curation

required to generate high quality data.

Approaches and incentives for data sharing that promote di-

versity in the datasets used for learning are needed as well.

This includes national and international data sharing standards

that make it possible to obtain data from both major medical

centers and community clinics. It is likely, for instance, that ma-

chine learning applications that improve patient treatment
98 Cell 181, April 2, 2020
response in major medical centers may not perform well in com-

munity settings due to differences in overall care and patient

populations. However, the ultimate goal of biomedical data

collection for machine learning is to obtain suitable representa-

tive data from patient cohorts to develop accurate machine

learning models that will generalize to diverse populations.

Therefore, there must be a concerted effort to also account for

variables such as patient status prior to treatment, treatment re-

gimes, age, gender, race, ethnicity, and environmental ex-

posures.

Rigorous evaluation approaches are needed for biomedical

machine learning applications, especially in settingswhere contin-

uous learning is required. In our view, the performance of a ma-

chine learning system is bestmeasured by the accuracy of its pre-

dictions in a prospective setting. We advocate for an iterative

approach to machine learning that includes: training with retro-

spective data, algorithm lock-down and deployment, followed

byassessment of the application’s accuracybased onpredictions

obtained during deployment. Data collected during deployment,

coupled with additional or larger retrospective datasets, can

then be used to retrain and optimize the algorithm, followed by

a subsequent deployment-evaluation cycle. Evaluating contin-

uous learning systems—such as those we envision for health

monitoring that must adapt to changes in health status or

habits—will likely require tightening this loop and use of data

collected during the deployment phase to detect limitations or fail-

ures. Quantifying not only accuracy but also confidence intervals

is critical, as some uses of machine learning will be more tolerant

to inexact predictions than others and confidence intervals can be

used by physicians to inform decision making. Iteratively training

and deploying machine learning applications poses regulatory

challenges as most diagnostic and therapeutic tests assume

that models and data are fixed. When models are updated in

response to new data or adapted for new diagnoses or treat-

ments, ongoing evaluation is needed to ensure that predictions

remain accurate. Real or simulated datasets that are multi-modal,

expansive, and longitudinal will be needed to ensure robust eval-

uation of biomedical machine learning applications.

While the challenges outlined above are significant, we are

optimistic that they can be overcome. Further, we believe the

effort is worthwhile, as success promises a future of rigorous,

outcomes-based medicine with detection, diagnosis, and treat-

ment strategies that are continuously adapted via machine

learning to individual and environmental differences and that

enable comprehensive health management.
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