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This Perspective explores the application of machine learning toward improved diagnosis and
treatment. We outline a vision for how machine learning can transform three broad areas of biomed-
icine: clinical diagnostics, precision treatments, and health monitoring, where the goal is to maintain
health through a range of diseases and the normal aging process. For each area, early instances of
successful machine learning applications are discussed, as well as opportunities and challenges
for machine learning. When these challenges are met, machine learning promises a future of
rigorous, outcomes-based medicine with detection, diagnosis, and treatment strategies that are

continuously adapted to individual and environmental differences.

Machine learning leverages sophisticated algorithms operating
on large-scale, heterogeneous datasets to uncover useful pat-
terns that would be difficult or impossible for even well-trained
individuals to identify. There already are many applications of
this approach throughout science and society ranging from
game playing (Silver et al., 2018), to product recommendations
(Batmaz et al., 2019), to controlling self-driving cars (Bojarski
et al., 2016). In biomedicine, work in the human genome project
(Venter et al., 2001), efforts in cancer omics (e.g., The Cancer
Genome Atlas [Tomczak et al., 2015], the International Cancer
Genome Consortium [Zhang et al., 2019], and the Clinical Pro-
teomic Tumor Analysis Consortium [Ellis et al., 2013]), and
numerous international machine learning competitions such
as DREAM challenges (Saez-Rodriguez et al., 2016; Sage Bio-
networks, 2020) and the Critical Assessment of Genome Inter-
pretation (Andreoletti et al., 2019) have shown the power of this
approach. The ability to collect and analyze large datasets
related to medical treatments and outcomes promises to trans-
form medicine into a data-driven, outcomes-oriented discipline
with profound implications for disease detection, diagnosis,
and treatment. Collection of molecular and phenotypic data
has become pervasive and includes genomic testing for
personalized treatment of cancer, high-resolution two- and
three-dimensional anatomical imaging of organs, histological
analyses of tissue biopsies, and smart watches that monitor
heart rates and notify wearers of irregularities (Shilo et al.,
2020). These and many other collected data provide the raw
material for a future of early, more accurate diagnoses, person-
alized treatments, and ongoing monitoring in support of overall
health.

Machine learning will help realize a future of improved health
care by unlocking the potential of large biomedical and patient
datasets. Early uses of machine learning in diagnosis and treat-
ment have shown promise to diagnosis breast cancer from X-
rays (McKinney et al., 2020; Wu et al., 2019), discover new anti-
biotics (Stokes et al., 2020), predict onset of gestational diabetes
from electronic health records (Artzi et al., 2020), and identify
clusters of patients that share a molecular signature of treatment
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response (Zitnik et al., 2019). Automated pattern recognition
through machine learning is essential due to the enormity and
complexity of biomedical data; manual analysis is both inefficient
and untenable. Equally important, many human diseases involve
a complex constellation of changes that occur dynamically and
vary from patient to patient. Understanding this complexity re-
quires analysis of large-scale heterogeneous data to identify
novel patterns that, after rigorous evaluation, can be used for
diagnosis and treatment. Machine learning, then, can assist
biomedical scientists and medical professionals by identifying
and summarizing meaningful patterns from large datasets (Raj-
komar et al., 2019). Careful evaluation of the patterns found
and predictions made by machine learning applications in diag-
nosis and treatment is essential. “Ground truth” data, in which
associations between data and outcome are known, can be
used to rigorously evaluate the performance of novel algorithms.
Such evaluation data may be quantitative, such as biomarker
reduction on treatment, or more qualitative, such as overall pa-
tient health. It is also important to appreciate that ground truth
may change depending on individual characteristics such as
age, gender, and environmental exposures.

Recognizing this, there are a growing number of research pro-
grams designed to collect and organize large-scale datasets
linking variables to health status, which can be used to train
and evaluate machine learning approaches. Programs in cancer
that aggregate molecular profiles from experimental model sys-
tems or patient samples together with diagnostic, prognostic,
and therapeutic responses provide examples of these valuable
data repositories. For example, the Cancer Dependency Map
(Tsherniak et al., 2017) has collected multimodal molecular pro-
files, drug response, and genetic viability data on more than
1,000 cancer cell lines. The AACR Project GENIE (AACR Project
GENIE Consortium, 2017) has collected genomic profiles and
clinical data for more than 19,000 patients, and the ASCO Can-
cerLinQ is building a similar database of hundreds of thousands
of patients. Coupled with advanced algorithms, such programs
have the potential to transform our understanding of diseases
and improve our ability to predict disease outcomes.
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Table 1. Key Concepts in Machine Learning

Concepts Definition

Supervised, Supervised learning predicts labels or
unsupervised, classes on future data based on past data
and semi- that includes labels/classes. Unsupervised
supervised learning identifies structure, usually
learning clusters, among unlabeled data. Semi-

Classification
and regression

Ensemble
learning

Deep learning

Bayesian
learning

Dimensionality
reduction

Federated
learning

supervised learning first performs
unsupervised learning, and humans label
structures found from unsupervised
learning.

Both are supervised learning methods.
Classification predicts discreet categories
such as normal versus diseased while
regression predicts real-valued outputs
such as response to therapy.

Ensemble methods build many models and
use the average of all models to produce
predictions. Common ensemble
approaches include random forests,
gradient-boosting, and stacking/meta-
ensembles.

Multi-layer artificial neural networks that
can learn complex non-linear functions.
Very useful for unstructured data such as
images, speech, or text but typically do not
provide insights in to the aspects of the data
that are driving the functions.

Methods that combine prior knowledge in
addition to data to perform machine
learning.

Reduces the number of attributes or
features of a dataset by selecting important
features or combining features to capture
variance in a dataset. Often used to improve
performance of machine learning models
and to aid visualization.

Approaches for incrementally learning from
data distributed in multiple locations and
which cannot be combined into a single
dataset. Federated learning is useful when
data are located in multiple clinical systems
or when learning from sensitive

personal data.

Machine learning is a subdiscipline of artificial intelligence, and
the main conceptual approaches in machine learning are sum-
marized in Table 1. Whereas artificial intelligence includes all
methods for enabling computers to display human-like under-
standing and intelligence, machine learning is focused specif-
ically on developing algorithms to learn from data. General clas-
ses of machine learning methods include: (a) supervised learning
in which data groups are associated with a specific outcome;
categorical data (e.g., disease versus normal) rely on classifica-
tion methods whereas continuous values (e.g., strength of
response to therapy) are used in regression methods, (b) unsu-
pervised or semi-supervised methods to cluster data into
discrete groups that can then be manually labeled and associ-
ated with outcome, (c) ensemble learning, where results from

multiple computational models are combined to produce a final
prediction, can lead to more accurate predictions by enabling
models to generalize to new data better (d) deep learning, which
uses artificial neural networks, a formalization modeled on the
human brain, to recognize patterns or associations in the data,
is especially useful when working with unstructured data such
as images, speech, and text, and (e) Bayesian learning, in which
prior knowledge is encoded into the learning process and is
especially useful in data-poor situations.

There are two complementary approaches that can be used
with any of these learning methods and are especially useful
for biomedical applications. Many biomedical datasets have a
large number of features (dimensions), and the number of fea-
tures may exceed the number of data points. Dimensionality
reduction can help improve the performance of machine learning
approaches by selecting a subset of relevant attributes of a data-
set or combining attributes into a smaller number that capture
variability in a dataset. Reducing the dimensions of a dataset is
also useful for visualizing data or model predictions. When
data are distributed across multiple sites and cannot be moved
to create a single dataset for machine learning, federated
learning approaches are used to learn incrementally across all
the data (Konecny et al., 2016; Yang et al., 2019). Federated
learning is especially important in many biomedical applications
where data contain sensitive or protected health information that
cannot be easily shared. Most of these approaches are concep-
tually mature but are now finding increased use as structured
biomedical data become available and as computer technology
becomes sufficiently powerful to enable discovery of subtle but
important patterns in large datasets. A recent review provides
a brief tutorial on machine learning approaches in the life sci-
ences (Camacho et al., 2018). The application goals and avail-
able data dictate appropriate machine learning methods to
use. Table 2 lists prototypic examples of machine learning appli-
cations for medical diagnosis and treatment.

We expect that applications of machine learning will have a
profound impact on many aspects of health management as
computers optimized for machine learning increase in power
and as infrastructure for accurate data collection and curation
becomes more widely deployed. Immediate biomedical oppor-
tunities summarized in the following sections include earlier
and more accurate disease detection, better diagnosis, and
more durable and tolerable treatments. Of course, the accuracy
of the underlying “learned” relationships depends on the
accuracy and magnitude of the data on which learning is based.
This can be enhanced substantially by widely deploying stan-
dardized electronic medical record systems designed specif-
ically to support machine learning and by supporting their
widespread use. Acquisition of data “at home” using smart-
phones, commercial home assistant devices (e.g., Amazon
Echo, Google Home), and other electronic devices will further
enhance robust biomedical machine learning. Looking ahead,
we envision these trends merging to enable outcomes-based
personalized management of patient health (Figure 1) using algo-
rithms that increase in accuracy as the quantity and quality of
data grows.

In this Perspective, we outline a vision for how machine
learning can be applied to make critical advances in
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Table 2. Example Applications of Machine Learning for Diagnosis and Treatment
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Deep learning

Unstructured data; Labeled data

Medical imaging diagnostics (Liu

et al., 2019)

Automated diagnoses

Images and associated diagnoses

Traditional machine learning on

Structured and unstructured data;

(Artzi et al., 2020); patient similarity Labeled data

Diagnosis of gestational diabetes
(Lee et al., 2018)

Predict clinical outcomes

EMR data + clinical outcomes

structured data with labels; deep

learning/natural language

processing to mine unstructured

data; federated learning

Both supervised and deep learning
approaches, with adjustments
made for time-series analyses

Unstructured, longitudinal data;

(Bumgarner et al., 2018) and agonal Labeled data

Detection of atrial fibrillation
breathing, an audible biomarker of
cardiac arrest (Chan et al., 2019)

Wearable and home device ambient Early diagnoses

data collection

Continuous learning

Structured and unstructured data;

Labeled data

None yet due to lack of available

datasets

Ongoing health management

Deep longitudinal data

biomedicine. We focus on three biomedical areas: improved
clinical diagnostics, precision treatment, and health manage-
ment and monitoring. For each area, we describe opportunities
for machine learning applications to enable new insights or
improve on current state-of-the-art approaches, discuss suc-
cessful early applications of machine learning, and highlight un-
met needs to be addressed. We conclude by identifying several
cross-cutting challenges that, if solved, will help realize the full
potential of machine learning in biomedicine.

Improved Diagnostics from Clinical Imaging and
Molecular Tests

Technological advances in clinical testing are generating or-
ders of magnitude more data than tests in the past. High-fidelity
imaging tests now produce large two-, three-, or four-dimen-
sional (the fourth dimension being time) images of tissue and
organs, and molecular tests can provide assessment of hun-
dreds or even thousands of genes and proteins. Machine
learning is both essential and ubiquitous for automated analysis
of diagnostic features in these data that are strongly associated
with disease type, status or response to treatment.

The use of deep learning to extract meaning from biomedical
images is one of the most active areas of current research.
Several recent publications have shown that computer-aided
detection (CAD) software using machine learning can interpret
radiologic images on par with medical professionals indicating
the power of this approach. For example, deep learning-based
CAD software was able to detect diabetic retinopathy at high
levels of accuracy (Gulshan et al., 2016) and to retrospectively
identify invasive and in situ breast cancer of all grades similar to
radiologists (McKinney et al., 2020; Wu et al., 2019). A recent
review found that deep learning-based approaches performed
as well as medical professionals across a range of medical im-
aging diagnostic tasks, although many of these studies are
small and have yet to perform a prospective evaluation (Liu
et al., 2019). Importantly, deep learning approaches benefit
from large datasets and will increase continually in accuracy
as the sizes of the training datasets grow.

Molecular assays can identify genetic mutations and quantify
gene expression levels and protein abundance from a variety of
samples, including blood, saliva, and tissue. Machine learning
has the potential to increase the utility of these data by discov-
ering complex sets of biomarkers associated with various dis-
ease states, which ultimately can inform patient outcome and
identify effective treatment strategies. Some examples from
cancer biology include using DNA methylation (Kang et al.,
2017) and nucleosome positioning (Heitzer et al., 2019) from
blood to predict tumor tissue of origin, quantifying cellular
pathway activation levels in biopsies and other tissue samples
(Way and Greene, 2019; Way et al., 2018), predicting genomic
features of brain cancers using magnetic resonance images
(Chang et al., 2018a), and forecasting cancer patient outcomes
based on multi-omics (Chaudhary et al., 2018) or imaging-
omics integrations (Mobadersany et al., 2018). Beyond cancer,
machine learning has been used to identify individuals with
sleep deprivation through analysis of mMRNA in the blood, in-
forming how sleep insufficiencies negatively affect health (La-
ing et al., 2019). Through integration of multiple data types
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Figure 1. How Machine Learning Applications Could Help Individuals Maintain Health

At home, machine learning may help in early detection of disease, monitoring response to treatment, and adherence to treatment regimens. In the clinic or
hospital, machine learning may aid medical professionals to diagnosis and tune treatment for an individual patient. The dashed line shows how a patient moves
between home and clinical settings and how machine learning can help at each step to maintain health.

and biomarkers, machine learning models are likely to be sub-
stantially more accurate than current practice, which is often
limited to a few markers and reflects only a narrow view of com-
plex diseases.

Joint human-computer diagnostic approaches such as those
illustrated in Figure 1, are likely to become common because
they take advantage of the strengths of both humans and com-
puters. In this collaborative approach, physicians will make a
final diagnosis by integrating all available information, including
that provided by machine learning systems (Ahuja, 2019). Ma-
chine learning systems will have a key role by automating routine
diagnosis, flagging challenging cases that require more human
input, and providing additional information useful in making diag-
noses (e.g., Ardila et al., 2019). Moreover, machine learning sys-
tems may use different features than medical professionals to
make diagnoses, though care will be required to assess the bio-
logical utility of such features. As a result, approaches that inte-
grate knowledge from both medical professionals and advanced
algorithms will lead to improved diagnoses. Ensuring that ma-

chine learning software is transparent will be critical before wide-
spread deployment and adoption. “Transparency” in this
context includes description of the optimized objectives,
strengths, quantitative performance, and limitations of a partic-
ular algorithm (Cai et al., 2019) as well as the procedures
used to validate the algorithm. These attributes will help medical
professionals decide when and how to use machine learning ap-
plications to obtain valid results and improve decision making.
Applications that use machine learning can help build trust in
the system and facilitate deeper understanding of the underlying
biological mechanism of disease by explaining predictions, such
as by highlighting the most important features used (Ching et al.,
2018; Litjens et al., 2016).

As more advanced clinical testing technologies are coupled
with machine learning, it will be important to consider tradeoffs
between disease detection rates, patient outcomes, and other
factors that impact patient health and quality of life. Disease
detection rates may increase with the use of machine learning
technologies, and disease-specific research will be needed to
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differentiate indolent versus fatal disease to avoid over-treat-
ment and to identify disease subtypes in order to guide the selec-
tion of the most effective treatments for each subtype. Careful
framing of clinical goals that can be connected to evaluation
and validation metrics will ensure that machine learning im-
proves patient care and overall health (Chen et al., 2019b).

Precision Treatment through Multiscale Modeling and
Expert Guidance

One of the most promising application areas for machine
learning is precision medicine, where a patient receives medical
care and treatment tailored to their personal disease profile. Pre-
cision oncology, where the goal is to prescribe cancer treat-
ments based on tumor molecular characteristics, is a prime
example of the challenges and opportunities for machine
learning in precision medicine. In current practice, individual mo-
lecular markers such as somatic mutations and gene expression
levels are often used to inform treatment selection. However, re-
sponses are often highly variable between patients due to differ-
ences at other genomic and epigenomic loci as well as anatomic
disease distribution (Brown et al., 2019; Kobayashi and Mitsu-
domi, 2016; Rotow and Bivona, 2017). Further complicating pre-
cision oncology is that there are hundreds of potential drugs, and
not every combination can be tested for every disease profile
(Gerstung et al., 2017; Kurnit et al., 2018).

One way that machine learning can help overcome these chal-
lenges is through the development of multifactorial predictive
models that are robust against individual diversity. For example,
single-purpose models have been built to forecast the functional
consequences of biological changes, such as how genetic muta-
tions influence splicing and gene expression (Xiong et al., 2015)
as well as transcription factor binding (Chen et al., 2019a). Ma-
chine learning models have also been built to predict drug
response in cancer cell lines (Chang et al., 2018b), transfer pre-
dictions from cell lines to patient tumors (Chiu et al., 2019), and
forecast patient response to therapies based on clinical
response data (Huang et al., 2018). Future advancements in
modeling for precision therapeutics are likely to operate over
multiple scales and serve multiple purposes. Multiscale
modeling will use large biological datasets to investigate the
growth and development of an organism across diverse tempo-
ral and spatial domains. Already there are computational models
of human-virus interactions (Lasso et al., 2019), cell-cell interplay
such as tumor-immune cell interactions, and even whole cells
(Metzcar et al., 2019; Rahman et al., 2017; Sakamoto et al.,
2018). Eventually, we anticipate that computational models of
organs and entire individuals —so-called “digital twins” (Bjorns-
son et al., 2019)—will be developed. The goal of digital twins will
be multifaceted, such as predicting the efficacy of different com-
bination therapies that have never been used together and
modeling the impact of disease on different organs.

While multiscale models may become accurate enough that
their predictions can be used directly for treatment, we envision
an intermediate stage in which machine learning approaches
generate a ranked list of suggested therapies that can be used
by expertly trained physicians to help guide treatment decisions.
For instance, patient-derived laboratory models could be used
to test predictions from computational models, with the best-
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performing predictions recommended for use in treatment.
This hybrid approach has many advantages: machine learning
models can dramatically reduce the space of potential treatment
combinations to be considered and identify others that might
otherwise be overlooked. An experimental validation step could
be added to provide additional evidence that a predicted therapy
is likely to be effective.

Precision medicine will also be advanced by using machine
learning to automatically mine and search expert knowledge in
published literature and patient databases (Rajkomar et al.,
2019). Patient databases, usually in the form of electronic health
records (EHRs), represent a rich source of information about
diagnosis, treatment, and treatment response for large patient
cohorts. Early efforts have attempted to use natural language
processing algorithms to mine publications (Dong et al., 2018),
EHRs (Shickel et al., 2018), and clinical reports (Kreimeyer
et al., 2017; Pons et al., 2016) for useful knowledge, such as
biomarker-therapy associations and biological pathways of in-
terest. Other applications have used structured information
from EHRs to predict disease onset (Artzi et al., 2020). Machine
learning will help harness this information and make it useful for
precision medicine through advanced approaches that address
the unstructured nature of data and metadata in publications and
EHRs. Of course, the EHR mining approach assumes that the in-
formation needed to establish a useful association is accurately
and completely captured. Unfortunately, this is not always the
case, and future work will be needed to increase the utility of
EHR analyses.

Health Management and Monitoring

We envision a shift in how complex diseases are treated, moving
from the goal of a cure to one of disease management. This
comprehensive health management approach will strive to main-
tain health through a range of diseases and the normal aging pro-
cess. Health management is demanding, because it requires
ongoing monitoring of all aspects of health for potential disease,
choosing treatments suited to individual patients, and adapting
treatments based on patient response (Figure 2). Here, machine
learning has a key role to play, largely by integrating many of the
ideas already discussed for diagnosis and treatment into a
continuous learning approach.

Outside of clinical settings, wearable devices and at-home
smart electronic devices provide a new avenue for health man-
agement. These devices can collect large amounts of fine-
grained data on patient health status that can be used by ma-
chine learning applications to suggest one-time actions,
changes in daily activities, or referral to a physician for assess-
ment and testing. Wearable devices now include sensors for mo-
tion, pulse, respiratory rate, body temperature, blood pressure,
oxygen levels, and other biometrics. Prototype applications
show how data from wearables might be useful, including: dia-
betes management (Chang et al., 2016), detection of atrial fibril-
lation (Bumgarner et al., 2018), blood cholesterol monitoring (Fu
and Guo, 2018), early detection of Parkinson’s disease (Lonini
et al., 2018), self-adherence to medications (Car et al., 2017;
Toh et al,, 2016), and early warning of heart attack (Sahoo
et al.,, 2017). Speech-driven home assistants have been used
to detect agonal breathing, an audible biomarker that is an early
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Figure 2. Integrating Data and Machine Learning Models for Continuous and Personalized Health Management

Combining data collected from both home (left) and clinical settings (right), or combining predictive models built at home and in the clinic, has the potential to lead
to comprehensive and integrated models that support personalized health management. Comprehensive models are more likely to perform well as they
incorporate more information about an individual, and these models have the potential to be applied in the home, clinic, or wherever an individual may be.

sign of cardiac arrest (Chan et al., 2019). In the future, machine
learning software is likely to be used to identify new biomarkers
from wearable and audio sensor data, perhaps by integrating
data across different types of devices. Both traditional super-
vised learning and deep learning are likely to play roles in devel-
oping models from wearable data.

Using machine learning together with data collected from
smartphones provides new opportunities for diagnostics as
well. Deep learning approaches have been applied to analyze
pictures from smartphone cameras to identify different types of
skin cancers (Esteva et al., 2017) and also to diagnose diabetic
retinopathy (Micheletti et al., 2016). Recent studies have found
that sensory data (e.g., voice, tapping, response time, and accel-
erometer data) collected from smartphones and processed
using machine learning can be used to monitor symptoms and
progression of Parkinson’s disease (Arora et al., 2015; Espay
et al., 2016; Ginis et al., 2016; Pereira et al., 2016). These proto-
type applications suggest a role for machine learning where
wearables, home devices, and smartphones are used to capture
all kinds of data, including biometric measurements, photos, di-
etary intake, and even environmental information (i.e., the “expo-
some” [Vermeulen et al., 2020]). By connecting this information
with diagnoses, machine learning will be used to identify patterns
within the data that suggest a particular diagnosis.

The foundation of health management is the ongoing moni-
toring of individual behavior and body functioning through
home and wearable devices together with readouts from routine
blood sampling. Personalized models of baseline functions and
activity will be built by customizing population-level models

with data collected for each individual. A key advantage of this
approach is that personal baselines can be established and de-
viations from baselines—that may indicate a change in health
status—can be detected. Using personalized models, machine
learning applications will monitor individuals for any changes
from normal and notify individuals when a change requires con-
sult with a medical professional. An interesting possibility along
these lines is suggested by recent work showing that monitoring
of individual internet symptom searches (in essence, self-re-
ported health issues such as weight loss, bronchitis, cough,
chest pain, etc.) coupled with machine-learned tendencies
from many individuals can enable early detection of lung (White
and Horvitz, 2017) and pancreatic (Paparrizos et al., 2016) can-
cers. This could lead to a physician or patient alert system that
recommends medical attention when a more serious issue may
explain the seemingly innocuous symptoms searched for. Of
course, many issues regarding privacy would have to be over-
come to make this possible.

Once in a clinical setting, high-fidelity imaging and molecular
testing will be interpreted by medical professionals with the
help of machine learning to identify noteworthy biomarkers and
make a final diagnosis. Disease diagnoses that require treatment
will use multiscale modeling and automated search results for
similar patients to inform treatment selection.

After diagnosis and treatment, health management begins
again with ongoing monitoring of individual health. This time, how-
ever, there are multiple goals that a machine learning system must
meet: monitor how the individual is responding to treatment,
watch for any adverse effects, and monitor overall health and
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changes from baseline not accounted for by treatment. Machine
learning will help adapt the initial personalized model to include
the new diagnosis and therapy information, creating an expected
trajectory on treatment that will serve as the new baseline.

Health management across a person’s lifespan will require
data integration and modeling at a level of sophistication and
automation that is only possible with machine learning. Each
step in health management—building personalized models and
using them to monitor for and accurately detect anomalies, aid-
ing physicians in diagnosis and treatment through automated
processing of large datasets and patient databases, and updat-
ing individual models for new diagnoses and treatments—is data
intensive and requires automated pattern recognition of complex
datasets. Health management will also continuously learn as
models will be updated with availability of new data. Two general
approaches for continuous learning are to build new predictive
models or to update existing models, and more work is needed
to understand the strengths and limitations of these approaches
for different applications.

Challenges and Concluding Thoughts

For machine learning to play a transformative role in diagnosis
and treatment, it is necessary to develop high-quality, well-
curated datasets. High-quality datasets have several important
benefits: they improve the predictive power of machine learning
methods while reducing the size of the data needed for training
and the complexity of the learned representations. Famously,
machine learning approaches for image recognition accelerated
when ImageNet (Deng et al., 2009), a corpus of labeled and onto-
logically linked images, was introduced. Similar efforts in
biomedicine are needed across the variety the tasks where ma-
chine learning may be applied.

Creating high-quality datasets for machine learning applica-
tions in diagnosis and treatment will require addressing tech-
nical, legal, and economic issues that often result in siloed
biomedical data that are not standardized. As discussed above,
federated learning provides a technical solution for combining
data among siloed systems because no actual data movement
is necessary and individual privacy can be protected. Wearables
and home devices provide a way to collect accurate data, and
machine learning can be used as a preprocessing step to extract
accurate analytic and clinical data from unstructured sources
such as electronic health records and publications. Legal pro-
cedures must be developed for the secure management and
analysis of private health information (PHI), and community and
legal standards that define the performance of these procedures
must be established. Biomedical institutions and individuals
must be incentivized to engage in data standardization and
sharing. Similarly, insurers, the pharmaceutical industry, and
agencies that support biomedical research must be willing to
invest the infrastructure, data acquisition, and data curation
required to generate high quality data.

Approaches and incentives for data sharing that promote di-
versity in the datasets used for learning are needed as well.
This includes national and international data sharing standards
that make it possible to obtain data from both major medical
centers and community clinics. It is likely, for instance, that ma-
chine learning applications that improve patient treatment
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response in major medical centers may not perform well in com-
munity settings due to differences in overall care and patient
populations. However, the ultimate goal of biomedical data
collection for machine learning is to obtain suitable representa-
tive data from patient cohorts to develop accurate machine
learning models that will generalize to diverse populations.
Therefore, there must be a concerted effort to also account for
variables such as patient status prior to treatment, treatment re-
gimes, age, gender, race, ethnicity, and environmental ex-
posures.

Rigorous evaluation approaches are needed for biomedical
machine learning applications, especially in settings where contin-
uous learning is required. In our view, the performance of a ma-
chine learning system is best measured by the accuracy of its pre-
dictions in a prospective setting. We advocate for an iterative
approach to machine learning that includes: training with retro-
spective data, algorithm lock-down and deployment, followed
by assessment of the application’s accuracy based on predictions
obtained during deployment. Data collected during deployment,
coupled with additional or larger retrospective datasets, can
then be used to retrain and optimize the algorithm, followed by
a subsequent deployment-evaluation cycle. Evaluating contin-
uous learning systems—such as those we envision for health
monitoring that must adapt to changes in health status or
habits—will likely require tightening this loop and use of data
collected during the deployment phase to detect limitations or fail-
ures. Quantifying not only accuracy but also confidence intervals
is critical, as some uses of machine learning will be more tolerant
to inexact predictions than others and confidence intervals can be
used by physicians to inform decision making. Iteratively training
and deploying machine learning applications poses regulatory
challenges as most diagnostic and therapeutic tests assume
that models and data are fixed. When models are updated in
response to new data or adapted for new diagnoses or treat-
ments, ongoing evaluation is needed to ensure that predictions
remain accurate. Real or simulated datasets that are multi-modal,
expansive, and longitudinal will be needed to ensure robust eval-
uation of biomedical machine learning applications.

While the challenges outlined above are significant, we are
optimistic that they can be overcome. Further, we believe the
effort is worthwhile, as success promises a future of rigorous,
outcomes-based medicine with detection, diagnosis, and treat-
ment strategies that are continuously adapted via machine
learning to individual and environmental differences and that
enable comprehensive health management.
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