实验要求 1
实验指导文档:Python文件处理与数据分析实验
一、实验目的 - 掌握文本、CSV、JSON文件的读写与处理 - 理解数据清洗与基本分析流程 - 完成小型真实数据处理项目,包括简单情感分类与关键词关联分析
二、实验步骤 1. 读取 feedback.txt,添加编号并输出 feedback_indexed.txt 2. 将编号数据写入 CSV 文件 feedback.csv 3. 将 CSV 数据转换为 JSON 格式 feedback.json 4. 进行简单情感分类,输出 feedback_classified.json - (出现以下单词时为positive:good, great, useful, love, amazing, excellent, best, helpful) - (出现以下单词时为negative:bad, crash, crashes, slow, hate, worse, freezing, fail) 5. 绘制情感分类结果条形图 6. 统计每一类情感的前10个高频词,输出 sentiment_keywords.json
三、数据文件示例
-
feedback.txt 示例(原始) Great app, very useful! I love the design, very clean! Sometimes it crashes when I open it. ...
-
feedback_indexed.txt 示例(加编号) 1 Great app, very useful! 2 I love the design, very clean! 3 Sometimes it crashes when I open it. ... ...
-
feedback.csv 示例(两列) id,content 1,Great app, very useful! 2,I love the design, very clean! 3,Sometimes it crashes when I open it. ...,...
-
feedback.json 示例(列表字典结构) [ {"id": 1, "content": "Great app, very useful!"}, {"id": 2, "content": "I love the design, very clean!"}, ... ]
-
feedback_classified.json 示例(每一项加分类标签) [ {"id": 1, "content": "Great app, very useful!", "sentiment": "positive"}, {"id": 2, "content": "I love the design, very clean!", "sentiment": "positive"}, {"id": 3, "content": "Sometimes it crashes when I open it.", "sentiment": "negative"}, ... ]
-
sentiment_keywords.json 示例(字典嵌套字典结构) { "positive": { "app": 5, "useful": 3, ... }, "negative": { "crash": 4, "slow": 3, ... } }
四、注意事项 - 保持文件编码为 UTF-8 - 遇到异常(如文件找不到)时,及时检查路径和文件名(考虑添加异常捕获与处理逻辑) - 分步骤保存中间结果,便于调试(可用pdb工具调试) - 实验最终给出完整的6个文件(feedback.txt,feedback_indexed.txt,feedback.csv,feedback.json,feedback_classified.json,sentiment_keywords.json) - 实验报告参考报告模板撰写,并将word格式的报告发到老师邮箱:zongchang@zust.edu.cn(报告文件名格式:姓名_学号_报告1)