
Python程序设计与实践

专业高级技术拓展

第二课：字符串、浮点数、输
入输出、条件分支

2025.2



Today

◼ 字符串（STRINGS）

◼ 浮点数（FLOATS）

◼  输入输出操作（INPUT/OUTPUT）

◼  条件分支（CONDITIONS for BRUNCHING）



前情回顾

Python基础的总结

◼ 数据对象

✓ 每个对象在计算机中拥有自己的类型

✓ 类型告诉Python可以对这个对象做哪些操作

✓ 表达式是对象和操作符的组合并对应着一个值

✓ 变量将数据对象赋予一个名字，“=”是赋值操作

◼ 赋值程序

✓ 程序只执行你让它做的逻辑，程序的每一行按顺序执行

✓ 好的变量名称和注释可以帮助阅读代码



Chapter 1: STRINGS



STRINGS

◼ str（字符串）是Python程序中的数据类型，代表一串大小写敏感的字符序列

• 字符：字母、数字、空格、特殊字符等

◼ Python字符串的写法是将字符串包裹在双引号（“ ”）或单引号（‘ ’）之间

• 注意符号的一致性：

• a = “me”

• z = ‘you’

◼ 字符串有丰富的操作，这让它非常有用！

• b = “myself”

• c = a + b

• d = a + “ ”+ b

• silly = a * 3



STRINGS

◼ 自己尝试下，s1和s2的值分别是什么？

b = ":"

c = ")"

s1 = b + 2 * c

f = "a"

g = " b"

h = "3"

s2 = (f + g) * int(h)



STRINGS

◼ 字符串常用操作之——长度计算

• len( )：用于获取括号中字符串变量的字符串长度

• s = “abc”

• s_len = len(s)  # is 3

• 越长的字符串，len会不会执行越慢？

• 不会，字符串的长度在创建数据对象时就已确定

• 由底层C语言代码高效计算出来，存为该字符串对象的属性

• len() 的本质是调用对象的内置方法



STRINGS

◼ 字符串常用操作之——字符串截取

• 截取单个字符——indexing

• 方括号用于对字符串做索引来得到特定位置的字符（还是str类型）

• s = “abc”

• 正向索引从0开始，逆向索引从-1开始

s[0]  # “a”

s[1]  # “b”

s[-1]  # “c”

s[-2]  # “b”

s[3] # IndexError: string index out of range



STRINGS

◼ 字符串常用操作之——字符串截取

• 截取字符子串——SUBSTRING

• 使用 [start : stop : step] 来截取字符串

从start开始到stop-1结束，每隔step取一个

• 如果只用 [start : stop]， 默认step=1

• 如果只用 [start : ]，默认从start开始到字符串结尾

• 如果只用 [ : ]，默认从字符串开头到结尾

• 如果只用 [ : end]，？

• 如果step是负数，？



STRINGS

◼ 字符串常用操作之——字符串截取

• 字符串截取例子

s=“abcdefgh”

• s[3:6] # 得到“def”跟 s[3:6:1] 一样

• s[3:6:2] #得到 “df”

• s[:] # 得到 “abcdefgh”，跟 s[0:len(s):1] 一样

• s[::-1] # 得到 “hgfedcba”

• s[4:1:-2] # 得到 “ec”



STRINGS

◼ 自己尝试以下字符串截取的结果

s = "ABC d3f ghi"

s[3:len(s)-1]

s[4:0:-1]

s[6:3]



STRINGS

◼ 字符串类型还有很多操作

• 用dir( )语句，可以查看一个对象的内置方法

• 自己下去多尝试，这些主要的方法作用效果是什么？



STRINGS

◼ “不可变”的STRING

• 字符串在Python中是不可变的（immutable）

• 可以通过赋值语句创建新的字符串对象给同一个变量（对象替换）

• 不可以直接在原有字符串上进行修改（原位替换）

• 如：

• s = “car”

• s[0] = ‘b’# TypeError: 'str' object does not support item assignment

• s = ‘b’+ s[1 : len(s)] # 正确，s变量被赋予新的对象“bar”



STRINGS

◼ 高效学习Python语法的方式：马上去控制台尝试输出的内容



Chapter 2: FLOATS



FLOATS

◼ 浮点数

• 为什么叫作“浮点数”？

• 浮点数被称为“浮点数”（floating-point number）的原因与其在计算机

中的表示方式密切相关。这一名称来源于数值的小数点位置可以“浮动”

（即动态调整），以灵活表示极大或极小的数值范围。



FLOATS

◼ 浮点数

• 灵感来自科学计数法：

• 6.022e23 或 1.6e-19

• 尾数（如 6.022 或 1.6）表示有效数字

• 指数（如23 或 -19）表示数量级

• 调整指数，小数点可以“浮动”到不同位置，高效覆盖广泛的数字范围

• 1.23 × 10^4 = 12300（小数点右移4位）

• 1.23 × 10^-2 = 0.0123（小数点左移2位）



FLOATS

◼ 浮点数

• 计算机为什么要用浮点数？

• 兼顾“大范围”和“小精度”

• 通过动态调整指数，使小数点位置“浮动”，从而在有限的存储空间中兼

顾大范围和小精度（例如 3.14 和 6.022e23 使用相同的存储格式）。

符号位 指数位（偏移量） 尾数位

二进制存储



FLOATS

◼ 浮点数

• 一些浮点数换算的例子：

• (1, 1) → 1*21 → 10（2进制） → 2.0

• (1, -1) → 1* 2−1 → 0.1（2进制） → 0.5

• (125, -2) → 125* 2−2 → 11111.01（2进制） → 31.25

• 125的二进制是1111101

• 向左浮动2位得到11111.01

• （二进制中乘以2的几次幂就是移动小数点几次，正数次幂向右，负数次幂向左）

• 转十进制得到31.25



FLOATS

◼ 浮点数运算的有趣现象

• 0.1 + 0.2 == 0.3 # False

• 0.1 + 0.2 # 0.30000000000000004

为什么？

➢ 精度丢失

计算机运算时会将输入的十进制转换为二进制，很多数字会落入无限循环的

小数位，但计算机存不下那么多小数（32位），因此会进行截取，导致精度

产生损失，计算结果只是个近似值。

对于大部分场景损失很小的精度无关紧要，也可使用高精度运算（64位）



FLOATS

◼ 自己尝试运行以下代码并观察结果：

例子1: 例子2:

循环10次，累加一个浮点数到一个变量x中，判断变量是否等于预期的浮点数值



FLOATS

◼ 浮点数运算的注意事项

• 永远不要用==判断两个浮点数是否相等

1. 设定误差范围：a-b < 1e-9

2. 现成的容差函数：math.isclose(0.1 + 0.2, 0.3)

3. 限制小数位数比较：round(0.1 + 0.2, 5) == round(0.3, 5)

• 要小心设计使用浮点数的算法代码

1. 数值超过浮点数能表示的最大范围：1e308 * 10 # inf

2. 数值过小接近零被四舍五入：1e-324 * 0.1 # 0.0

3. 将整数转换为浮点数丢失精度：float(12345678901234567890) # 

1.2345678901234567e+18 （损失精度）



Chapter 3: INPUT/OUTPUT



INPUT/OUTPUT

◼ 打印语句（print）

➢ 用于在命令行中输出内容

• 在交互式控制台：可以直接输出表达式结果

• 在.py文件：需要print语句才能在执行程序时输出结果

➢ 在一个命令中打印多个对象信息

• 用逗号分隔要打印的对象，输出以空格分隔的结果

• 用加号拼接字符串打印一个整体的结果
a = “the”

b = 3

c = “musketeers”

print(a, b, c) # “the 3 musketeers”

print(a + str(b) + c) # “the3musketeers”



INPUT/OUTPUT

◼ 输入语句（input）

➢ 有时，需要程序支撑用户的在线输入，并用输入的内容做灵活的处理

➢ x = input(“Your input text: ”)

• 用户可以在“Your input text: ”后面输入任何字符串

• 例如输入“hi”并按回车，这个字符串作为input的返回值被赋给x变量

• print(5*text) # hihihihihi



INPUT/OUTPUT

◼ 输入语句（input）

➢ 需要注意的是，input总是返回字符串类型（str）

➢ 如果要处理数字，需要转换对象类型

• num1 = input(“Type a number: ”) # type 3

• print(5*num1) # 33333

• num2 = int(input(“Type a number: ”)) # type 3

• print(5*num2) # 15



INPUT/OUTPUT

◼ 自己尝试实现以下要求的输出效果：

• 让用户输入一个动词

• 1. 打印“I can __ better than you!”，替换 __为你让用户输入的动词

• 2. 在一行中打印这个动词5次，以空格分隔每两个动词

• 举例：

• 如果用户输入的是“run”

• 你打印出：
I can run better than you!

run run run run run



INPUT/OUTPUT

◼ 格式化字符串输出

• 从Python 3.6之后支持

• 任何的操作可以通过一个字符串表示

• 操作的表达式由花括号{ }包裹

• 表达式在运行语句时被自动计算，并转换为字符串类型，再与外面的字符

串拼接起来

用逗号时以空格分隔

同时用逗号和拼接操作，拼接没有空格

用格式化字符串输出，{}中的表达式自动执行



INPUT/OUTPUT

◼ 表达式可以被置于任何位置！

◼ Python会在执行时自动计算表达的值



Chapter 4: CONDITIONS 

for BRANCHING



CONDITIONS for BRANCHING

◼ 赋值与逻辑相等

➢ 计算机中的两种“相等”：

1. variable = value

• 将变量variable的值赋为value

2. expression1 == expression2

• 测试是否“相等”

• 不发生赋值操作

• 整个语句可以被True或False代替



CONDITIONS for BRANCHING

◼ 比较操作（Comparison）

➢ 把变量i与变量j进行比较，int, float, string等类型的变量都可以比较

➢ 比较操作的结果是布尔类型的值（Boolean），只有True和False两个值

i > j

i >= j

i < j

i <= j

i == j

i != j

注意：避免直接比较小数



CONDITIONS for BRANCHING

◼ 布尔逻辑运算（Logical Operators on bool）

• 设a和b为具有布尔类型的变量名（值为True或False）

• not a # True 如果 a 为 False

• a and b # True 如果 a 和 b 都为 True

• a or b # True 如果 a 和 b 至少有一个为 True



CONDITIONS for BRANCHING

◼ 一些比较操作的例子

pset_time = 15

sleep_time = 8

print(sleep_time > pset_time) # False

derive = True

drink = False

both = drink and derive

print(both) # False



CONDITIONS for BRANCHING

◼ 常用比较操作一览



CONDITIONS for BRANCHING

◼ 自己尝试写一段程序：

• 设置一个秘密的数字，赋给一个变量

• 让用户猜一个数字输入进来

• 根据所猜的数字与你的秘密数字是否相等，打印出布尔值False或True



CONDITIONS for BRANCHING

◼ 我们为什么需要布尔类型的值？

➢ 当我们要对程序进行流程控制时，我们可以基于布尔变量的结果来设计不

同的代码逻辑

➢ “如果某条件满足（True），执行A，否则（False），执行B”



CONDITIONS for BRANCHING

◼ 基于布尔逻辑运算的例子



CONDITIONS for BRANCHING

◼ 基于条件做流程控制

• 以上我们介绍了逻辑运算和流程控制，Python中怎么写条件流程控制呢？
if <condition>:

<code>

<code>

else:

<code>

• <condition>会产生布尔类型的值（True 或者 False）

• 注意Python程序中的缩进（四个\s或者一个\t）（有些语言不care）

• 如果条件满足（True），就执行if下面的<code>，否则执行else下面的



CONDITIONS for BRANCHING

◼ 基于条件做流程控制

• 以上我们介绍了逻辑运算和流程控制，Python中怎么写条件流程控制呢？

if-else 句法

if-else 函数例子



CONDITIONS for BRANCHING

◼ 基于条件做流程控制

if <condition>:

<code>

<code>

elif <condition>:

<code>

elif <condition>:

<code>

…

• 这段代码是如何执行的？

• 按顺序，遇到第一个<condition>为True的，就执行它下面的代码



CONDITIONS for BRANCHING

◼ 基于条件做流程控制

if <condition>:

<code>

<code>

elif <condition>:

<code>

else:

<code>

…

• 这段代码是如何执行的？

• 遇到第一个<condition>为True的，就执行它下面的代码

• 如果没有<condition>为True，就执行else下面的代码



CONDITIONS for BRANCHING

◼ 基于条件做流程控制

• 一个例子：根据一天的工作和睡觉小时数来输出不同的信息
work_time = ???

sleep_time = ???

if (work_time + sleep_time) > 24:

print(“Impossible!”)

elif (work_time + sleep_time) == 24:

print(“Full schedule!”)

else:

leftover = 24 – work_time – sleep_time

print(leftover, “h of free time!”)

print(“end of day”)



CONDITIONS for BRANCHING

◼ 基于条件做流程控制

• 更多的例子



CONDITIONS for BRANCHING

◼ 基于条件做流程控制

• 更多的例子



CONDITIONS for BRANCHING

◼ 基于条件做流程控制

• 更多的例子



CONDITIONS for BRANCHING

◼ 基于条件做流程控制

• 更多的例子



CONDITIONS for BRANCHING

◼ 基于条件做流程控制

• 更多的例子



CONDITIONS for BRANCHING

◼ 基于条件做流程控制

• 更多的例子



CONDITIONS for BRANCHING

◼ 基于条件做流程控制

• 更多的例子



CONDITIONS for BRANCHING

◼ 基于条件做流程控制

• 更多的例子



CONDITIONS for BRANCHING

◼ 基于条件做流程控制

• 更多的例子



CONDITIONS for BRANCHING

◼ 基于条件做流程控制

• 更多的例子



CONDITIONS for BRANCHING

◼ 自己尝试修改以下代码使它执行正确的逻辑

• 提示：注意缩进和逻辑性

x = int(input("Enter a number for x: "))

y = int(input("Enter a different number for y: "))

if x == y:

print(x,"is the same as",y)

print("These are equal!")

elif x > y:

print(x,"is bigger than",y)

print(x,"is smaller than",y)



CONDITIONS for BRANCHING

◼ 缩进和嵌套逻辑分支

• Python中的缩进很重要，具有逻辑语义，直接影响代码的正确性
if x == y:

print("x and y are equal")

if y != 0:

print("therefore, x / y is", x/y)

elif x < y:

print("x is smaller")

else:

print("y is smaller")

print("thanks!")

• 上下缩进对齐的代码，在逻辑上具有并列性（按顺序依次执行）



CONDITIONS for BRANCHING

◼ 自己尝试下，如果把下面的 if x >= y 改为 elif x >= y，会输出什么？

answer = ''

x = 11

y = 11

if x == y:

answer = answer + 'M'

if x >= y:

answer = answer + 'i'

else:

answer = answer + 'T'

print(answer)



CONDITIONS for BRANCHING

◼ 自己尝试编写一个程序，实现以下功能：

• 设置一个秘密的数字，赋给一个变量

• 让用户猜一个数字输入进来 （跟之前一样）

• 设置条件流程控制，输出所猜的数字是否太小、太大、或跟猜的一样



Chapter 5: SUMMARY



SUMMARY

◼ 我们学习了字符串（Strings）这种数据类型

➢ 字符串是一串字符序列，第一个字符的索引是0

➢ 字符串可以通过索引进行截取（slicing），获取子串

◼ 我们学习了浮点数（Float）这种计算机中的小数

➢ 其设计灵感来自科学计数法中小数点的浮动

➢ 通过小数点位置“浮动” 兼顾大范围和小精度



SUMMARY

◼ 我们学习了输入输出（Input/Output）这种程序交互方法

➢ 输入由input命令完成，任何用户输入的内容被读取为字符串类型

➢ 输出由print命令完成，只有在.py文件中print出来的内容才能在终端中看到

◼ 我们学习了条件流程控制（条件分支）这种逻辑编写方法

➢ 当条件输出结果为True时，程序会执行其下面的代码内容

➢ 在if–elif–elif-… 的程序结构中，第一个条件为True下的代码会被执行

➢ 在Python中，代码的缩进很重要，直接影响代码执行逻辑



Reading and QA Time



See you next week !


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

