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Today

◼ 字符串（STRINGS）

◼ 浮点数（FLOATS）

◼  输入输出操作（INPUT/OUTPUT）

◼  条件分支（CONDITIONS for BRUNCHING）



前情回顾

Python基础的总结

◼ 数据对象

✓ 每个对象在计算机中拥有自己的类型

✓ 类型告诉Python可以对这个对象做哪些操作

✓ 表达式是对象和操作符的组合并对应着一个值

✓ 变量将数据对象赋予一个名字，“=”是赋值操作

◼ 赋值程序

✓ 程序只执行你让它做的逻辑，程序的每一行按顺序执行

✓ 好的变量名称和注释可以帮助阅读代码



Chapter 1: STRINGS



STRINGS

◼ str（字符串）是Python程序中的数据类型，代表一串大小写敏感的字符序列

• 字符：字母、数字、空格、特殊字符等

◼ Python字符串的写法是将字符串包裹在双引号（“ ”）或单引号（‘ ’）之间

• 注意符号的一致性：

• a = “me”

• z = ‘you’

◼ 字符串有丰富的操作，这让它非常有用！

• b = “myself”

• c = a + b

• d = a + “ ”+ b

• silly = a * 3



STRINGS

◼ 自己尝试下，s1和s2的值分别是什么？

b = ":"

c = ")"

s1 = b + 2 * c

f = "a"

g = " b"

h = "3"

s2 = (f + g) * int(h)



STRINGS

◼ 字符串常用操作之——长度计算

• len( )：用于获取括号中字符串变量的字符串长度

• s = “abc”

• s_len = len(s)  # is 3

• 越长的字符串，len会不会执行越慢？

• 不会，字符串的长度在创建数据对象时就已确定

• 由底层C语言代码高效计算出来，存为该字符串对象的属性

• len() 的本质是调用对象的内置方法



STRINGS

◼ 字符串常用操作之——字符串截取

• 截取单个字符——indexing

• 方括号用于对字符串做索引来得到特定位置的字符（还是str类型）

• s = “abc”

• 正向索引从0开始，逆向索引从-1开始

s[0]  # “a”

s[1]  # “b”

s[-1]  # “c”

s[-2]  # “b”

s[3] # IndexError: string index out of range



STRINGS

◼ 字符串常用操作之——字符串截取

• 截取字符子串——SUBSTRING

• 使用 [start : stop : step] 来截取字符串

从start开始到stop-1结束，每隔step取一个

• 如果只用 [start : stop]， 默认step=1

• 如果只用 [start : ]，默认从start开始到字符串结尾

• 如果只用 [ : ]，默认从字符串开头到结尾

• 如果只用 [ : end]，？

• 如果step是负数，？



STRINGS

◼ 字符串常用操作之——字符串截取

• 字符串截取例子

s=“abcdefgh”

• s[3:6] # 得到“def”跟 s[3:6:1] 一样

• s[3:6:2] #得到 “df”

• s[:] # 得到 “abcdefgh”，跟 s[0:len(s):1] 一样

• s[::-1] # 得到 “hgfedcba”

• s[4:1:-2] # 得到 “ec”



STRINGS

◼ 自己尝试以下字符串截取的结果

s = "ABC d3f ghi"

s[3:len(s)-1]

s[4:0:-1]

s[6:3]



STRINGS

◼ 字符串类型还有很多操作

• 用dir( )语句，可以查看一个对象的内置方法

• 自己下去多尝试，这些主要的方法作用效果是什么？



STRINGS

◼ “不可变”的STRING

• 字符串在Python中是不可变的（immutable）

• 可以通过赋值语句创建新的字符串对象给同一个变量（对象替换）

• 不可以直接在原有字符串上进行修改（原位替换）

• 如：

• s = “car”

• s[0] = ‘b’# TypeError: 'str' object does not support item assignment

• s = ‘b’+ s[1 : len(s)] # 正确，s变量被赋予新的对象“bar”



STRINGS

◼ 高效学习Python语法的方式：马上去控制台尝试输出的内容



Chapter 2: FLOATS



FLOATS

◼ 浮点数

• 为什么叫作“浮点数”？

• 浮点数被称为“浮点数”（floating-point number）的原因与其在计算机

中的表示方式密切相关。这一名称来源于数值的小数点位置可以“浮动”

（即动态调整），以灵活表示极大或极小的数值范围。



FLOATS

◼ 浮点数

• 灵感来自科学计数法：

• 6.022e23 或 1.6e-19

• 尾数（如 6.022 或 1.6）表示有效数字

• 指数（如23 或 -19）表示数量级

• 调整指数，小数点可以“浮动”到不同位置，高效覆盖广泛的数字范围

• 1.23 × 10^4 = 12300（小数点右移4位）

• 1.23 × 10^-2 = 0.0123（小数点左移2位）



FLOATS

◼ 浮点数

• 计算机为什么要用浮点数？

• 兼顾“大范围”和“小精度”

• 通过动态调整指数，使小数点位置“浮动”，从而在有限的存储空间中兼

顾大范围和小精度（例如 3.14 和 6.022e23 使用相同的存储格式）。

符号位 指数位（偏移量） 尾数位

二进制存储



FLOATS

◼ 浮点数

• 一些浮点数换算的例子：

• (1, 1) → 1*21 → 10（2进制） → 2.0

• (1, -1) → 1* 2−1 → 0.1（2进制） → 0.5

• (125, -2) → 125* 2−2 → 11111.01（2进制） → 31.25

• 125的二进制是1111101

• 向左浮动2位得到11111.01

• （二进制中乘以2的几次幂就是移动小数点几次，正数次幂向右，负数次幂向左）

• 转十进制得到31.25



FLOATS

◼ 浮点数运算的有趣现象

• 0.1 + 0.2 == 0.3 # False

• 0.1 + 0.2 # 0.30000000000000004

为什么？

➢ 精度丢失

计算机运算时会将输入的十进制转换为二进制，很多数字会落入无限循环的

小数位，但计算机存不下那么多小数（32位），因此会进行截取，导致精度

产生损失，计算结果只是个近似值。

对于大部分场景损失很小的精度无关紧要，也可使用高精度运算（64位）



FLOATS

◼ 自己尝试运行以下代码并观察结果：

例子1: 例子2:

循环10次，累加一个浮点数到一个变量x中，判断变量是否等于预期的浮点数值



FLOATS

◼ 浮点数运算的注意事项

• 永远不要用==判断两个浮点数是否相等

1. 设定误差范围：a-b < 1e-9

2. 现成的容差函数：math.isclose(0.1 + 0.2, 0.3)

3. 限制小数位数比较：round(0.1 + 0.2, 5) == round(0.3, 5)

• 要小心设计使用浮点数的算法代码

1. 数值超过浮点数能表示的最大范围：1e308 * 10 # inf

2. 数值过小接近零被四舍五入：1e-324 * 0.1 # 0.0

3. 将整数转换为浮点数丢失精度：float(12345678901234567890) # 

1.2345678901234567e+18 （损失精度）



Chapter 3: INPUT/OUTPUT



INPUT/OUTPUT

◼ 打印语句（print）

➢ 用于在命令行中输出内容

• 在交互式控制台：可以直接输出表达式结果

• 在.py文件：需要print语句才能在执行程序时输出结果

➢ 在一个命令中打印多个对象信息

• 用逗号分隔要打印的对象，输出以空格分隔的结果

• 用加号拼接字符串打印一个整体的结果
a = “the”

b = 3

c = “musketeers”

print(a, b, c) # “the 3 musketeers”

print(a + str(b) + c) # “the3musketeers”



INPUT/OUTPUT

◼ 输入语句（input）

➢ 有时，需要程序支撑用户的在线输入，并用输入的内容做灵活的处理

➢ x = input(“Your input text: ”)

• 用户可以在“Your input text: ”后面输入任何字符串

• 例如输入“hi”并按回车，这个字符串作为input的返回值被赋给x变量

• print(5*text) # hihihihihi



INPUT/OUTPUT

◼ 输入语句（input）

➢ 需要注意的是，input总是返回字符串类型（str）

➢ 如果要处理数字，需要转换对象类型

• num1 = input(“Type a number: ”) # type 3

• print(5*num1) # 33333

• num2 = int(input(“Type a number: ”)) # type 3

• print(5*num2) # 15



INPUT/OUTPUT

◼ 自己尝试实现以下要求的输出效果：

• 让用户输入一个动词

• 1. 打印“I can __ better than you!”，替换 __为你让用户输入的动词

• 2. 在一行中打印这个动词5次，以空格分隔每两个动词

• 举例：

• 如果用户输入的是“run”

• 你打印出：
I can run better than you!

run run run run run



INPUT/OUTPUT

◼ 格式化字符串输出

• 从Python 3.6之后支持

• 任何的操作可以通过一个字符串表示

• 操作的表达式由花括号{ }包裹

• 表达式在运行语句时被自动计算，并转换为字符串类型，再与外面的字符

串拼接起来

用逗号时以空格分隔

同时用逗号和拼接操作，拼接没有空格

用格式化字符串输出，{}中的表达式自动执行



INPUT/OUTPUT

◼ 表达式可以被置于任何位置！

◼ Python会在执行时自动计算表达的值



Chapter 4: CONDITIONS 

for BRANCHING



CONDITIONS for BRANCHING

◼ 赋值与逻辑相等

➢ 计算机中的两种“相等”：

1. variable = value

• 将变量variable的值赋为value

2. expression1 == expression2

• 测试是否“相等”

• 不发生赋值操作

• 整个语句可以被True或False代替



CONDITIONS for BRANCHING

◼ 比较操作（Comparison）

➢ 把变量i与变量j进行比较，int, float, string等类型的变量都可以比较

➢ 比较操作的结果是布尔类型的值（Boolean），只有True和False两个值

i > j

i >= j

i < j

i <= j

i == j

i != j

注意：避免直接比较小数



CONDITIONS for BRANCHING

◼ 布尔逻辑运算（Logical Operators on bool）

• 设a和b为具有布尔类型的变量名（值为True或False）

• not a # True 如果 a 为 False

• a and b # True 如果 a 和 b 都为 True

• a or b # True 如果 a 和 b 至少有一个为 True



CONDITIONS for BRANCHING

◼ 一些比较操作的例子

pset_time = 15

sleep_time = 8

print(sleep_time > pset_time) # False

derive = True

drink = False

both = drink and derive

print(both) # False



CONDITIONS for BRANCHING

◼ 常用比较操作一览



CONDITIONS for BRANCHING

◼ 自己尝试写一段程序：

• 设置一个秘密的数字，赋给一个变量

• 让用户猜一个数字输入进来

• 根据所猜的数字与你的秘密数字是否相等，打印出布尔值False或True



CONDITIONS for BRANCHING

◼ 我们为什么需要布尔类型的值？

➢ 当我们要对程序进行流程控制时，我们可以基于布尔变量的结果来设计不

同的代码逻辑

➢ “如果某条件满足（True），执行A，否则（False），执行B”



CONDITIONS for BRANCHING

◼ 基于布尔逻辑运算的例子



CONDITIONS for BRANCHING

◼ 基于条件做流程控制

• 以上我们介绍了逻辑运算和流程控制，Python中怎么写条件流程控制呢？
if <condition>:

<code>

<code>

else:

<code>

• <condition>会产生布尔类型的值（True 或者 False）

• 注意Python程序中的缩进（四个\s或者一个\t）（有些语言不care）

• 如果条件满足（True），就执行if下面的<code>，否则执行else下面的



CONDITIONS for BRANCHING

◼ 基于条件做流程控制

• 以上我们介绍了逻辑运算和流程控制，Python中怎么写条件流程控制呢？

if-else 句法

if-else 函数例子



CONDITIONS for BRANCHING

◼ 基于条件做流程控制

if <condition>:

<code>

<code>

elif <condition>:

<code>

elif <condition>:

<code>

…

• 这段代码是如何执行的？

• 按顺序，遇到第一个<condition>为True的，就执行它下面的代码



CONDITIONS for BRANCHING

◼ 基于条件做流程控制

if <condition>:

<code>

<code>

elif <condition>:

<code>

else:

<code>

…

• 这段代码是如何执行的？

• 遇到第一个<condition>为True的，就执行它下面的代码

• 如果没有<condition>为True，就执行else下面的代码



CONDITIONS for BRANCHING

◼ 基于条件做流程控制

• 一个例子：根据一天的工作和睡觉小时数来输出不同的信息
work_time = ???

sleep_time = ???

if (work_time + sleep_time) > 24:

print(“Impossible!”)

elif (work_time + sleep_time) == 24:

print(“Full schedule!”)

else:

leftover = 24 – work_time – sleep_time

print(leftover, “h of free time!”)

print(“end of day”)



CONDITIONS for BRANCHING

◼ 基于条件做流程控制

• 更多的例子
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CONDITIONS for BRANCHING
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CONDITIONS for BRANCHING

◼ 基于条件做流程控制

• 更多的例子



CONDITIONS for BRANCHING

◼ 自己尝试修改以下代码使它执行正确的逻辑

• 提示：注意缩进和逻辑性

x = int(input("Enter a number for x: "))

y = int(input("Enter a different number for y: "))

if x == y:

print(x,"is the same as",y)

print("These are equal!")

elif x > y:

print(x,"is bigger than",y)

print(x,"is smaller than",y)



CONDITIONS for BRANCHING

◼ 缩进和嵌套逻辑分支

• Python中的缩进很重要，具有逻辑语义，直接影响代码的正确性
if x == y:

print("x and y are equal")

if y != 0:

print("therefore, x / y is", x/y)

elif x < y:

print("x is smaller")

else:

print("y is smaller")

print("thanks!")

• 上下缩进对齐的代码，在逻辑上具有并列性（按顺序依次执行）



CONDITIONS for BRANCHING

◼ 自己尝试下，如果把下面的 if x >= y 改为 elif x >= y，会输出什么？

answer = ''

x = 11

y = 11

if x == y:

answer = answer + 'M'

if x >= y:

answer = answer + 'i'

else:

answer = answer + 'T'

print(answer)



CONDITIONS for BRANCHING

◼ 自己尝试编写一个程序，实现以下功能：

• 设置一个秘密的数字，赋给一个变量

• 让用户猜一个数字输入进来 （跟之前一样）

• 设置条件流程控制，输出所猜的数字是否太小、太大、或跟猜的一样



Chapter 5: SUMMARY



SUMMARY

◼ 我们学习了字符串（Strings）这种数据类型

➢ 字符串是一串字符序列，第一个字符的索引是0

➢ 字符串可以通过索引进行截取（slicing），获取子串

◼ 我们学习了浮点数（Float）这种计算机中的小数

➢ 其设计灵感来自科学计数法中小数点的浮动

➢ 通过小数点位置“浮动” 兼顾大范围和小精度



SUMMARY

◼ 我们学习了输入输出（Input/Output）这种程序交互方法

➢ 输入由input命令完成，任何用户输入的内容被读取为字符串类型

➢ 输出由print命令完成，只有在.py文件中print出来的内容才能在终端中看到

◼ 我们学习了条件流程控制（条件分支）这种逻辑编写方法

➢ 当条件输出结果为True时，程序会执行其下面的代码内容

➢ 在if–elif–elif-… 的程序结构中，第一个条件为True下的代码会被执行

➢ 在Python中，代码的缩进很重要，直接影响代码执行逻辑



Reading and QA Time



See you next week !
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