
Python程序设计与实践

专业高级技术拓展

第三课：循环控制与查找算法

2025.3

Today

n while循环

n for循环

n 在字符串上进行循环操作

n 猜谜游戏的例子

Recap

n 字符串（STRINGS）
• 字符串是字符序列，第一个字符的索引是0

• 字符串可以被索引和分割

n 输入输出操作（INPUT/OUTPUT）
• 输入通过input命令实现

• 任何用户输入的内容被Python读入为string对象

• 输出通过print命令实现，在.py文件只有print出来的才能在终端看到

n 条件分支（CONDITIONS for BRUNCHING）
• 程序会执行条件返回值为true的代码块

• 在一个if… elif … elif…的代码结构中，第一个条件为True会被执行

• 缩进在Python直接影响代码逻辑，一定要注意缩进！

Recap

n 条件分支复习

• <condition>只有True或者False两种值

• 执行第一个<condition>为True下面的代码块

• 注意代码缩进

Recap

n 试想一个场景：需要无限地判断当前的状态并做出反馈

• 如果一直往右边走，你将被永远困在森林中

• 如果往其他方向走，你可以走到出口

写不完，根本写不完！

Recap

n 试想一个场景：需要无限地判断当前的状态并做出反馈

• 如果一直往右边走，你将被永远困在森林中

• 如果往其他方向走，你可以走到出口

Chapter 1: while Loops

while loops

n 场景：沉浸于抖音短剧无法自拔

抖音：开始播放一集新的短剧

抖音：推荐三个与上一个相似的短剧

播放下一集

还有更多集
可以播放吗？

没了

还有

while loops

n 流程控制的方法之一：while 循环

• <condition>的值为布尔类型（True或者False）

• 如果<condition>为True，依次执行while下面所有的代码内容

• 再检查一次<condition>的值

• 重复执行直到<condition>为False

• 如果<condition>永远不为False，将一直循环下去…

while loops

n 流程控制的方法之一：while 循环
“你被困在了黑暗森林中”

***********😂*************

“往左走还是往右走？”

where = input(“你被困在了黑暗森林中，往左走还是往右走？”)

while where == “right”:

where = input(“你被困在了黑暗森林中，往左走还是往右走？”)

Print(“你走出了黑暗森林！”)

while loops

n 自己尝试下，如果输入的是“RIGHT”会输出什么？

where = input("Go left or right? ")

while where == "right":

where = input("Go left or right? ")

print("You got out!")

while loops

n while循环的例子

变量值递减直到满足条件

n = int(input("Enter a non-negative integer: "))

while n > 0:

print('x’)

n = n-1

while loops

n while循环的例子

变量值递减直到满足条件

n = int(input("Enter a non-negative integer: "))

while n > 0:

print('x’)

n = n-1

如果没有最后一行会怎样？

Ø 怎么终止循环：按下CTRL-c 或 CMD-c，或者直接叉掉窗口

while loops

n 运行以下代码并终止无限循环

while True:

print("noooooo")

• while循环会⽆限重复其内部的代码，有时候需要你⼿动⼲预

while loops

n 拓展以下代码，当用户执行了两次while循环时，让代码打印出一个sad face ;(

n 提示：定义一个变量作为计数器

where = input("Go left or right? ")

while where == "right":

where = input("Go left or right? ")

print("You got out!")

while loops

n 基于while循环流程控制

• 遍历数字序列执行逻辑

n = 0

while n < 5:

 print(n)

 n = n+1

在while循环外设置循环变量

检测循环变量是否满足条件

在循环内部对变量进行递增操作

while loops

n 基于while循环流程控制

• 计算阶乘（factorial）

x = 4

i = 1

factorial = 1

while i <= x:

factorial *= i

i += 1

print(f'{x} factorial is {factorial}')

在while循环外设置循环变量

初始化阶乘值为1

在循环内部对变量进行递增操作

检测循环变量是否满足条件

进行乘法操作

Chapter 2: for Loops

for loops

n 场景：不让你沉迷于抖音短剧太久

抖音：开始播放一集新的短剧

抖音：别看了，休息下，自动退出

播放下一集

是否连续播
放了4集？

是

否

for loops

n 流程控制：while 和 for 循环

⽤ while 循环略显啰嗦
n = 0
while n < 5:
 print(n)
 n = n+1

⽤for循环⽐较简洁
for n in range(5):
 print(n)

for loops

n for循环的语法结构

for <variable> in <sequence of values>:

 <code>

 ...

• 每一次循环， <variable> 获取一个值

• 第一次循环， <variable> 是 <sequence of values>的第一个值

• 下一次循环， <variable> 是 第二个值

• 直到<variable> 取完了序列中的所有的值

for loops

n for循环的语法结构
for <variable> in range(<some_num>):
 <code>
 <code>
 ...

for n in range(5):
 print(n)

• <variable> 从0开始，然后1，2，3，4（n-1）

for loops

n range

• 根据规则生成一串int类型的数字

• range(start, stop, step)

• start: 生成的第一个int数字

• stop：要生成的最后一个数字（不包含这个数字本身）

• step：隔多长生成下一个数字

• 跟字符串的分割操作类似，且经常省略start和step

• 例如：for i in range(4) 从0开始到3结束，step=1

• 例如：for i in range(3,5) 从3开始到4结束，step=1

for loops

n 请在你的环境中尝试以下语句并查看输出：

for i in range(1,4,1):

 print(i)

for j in range(1,4,2):

 print(j*2)

for me in range(4,0,-1):

 print("$"*me)

for loops

n 累加操作

• mysum用于存储累加的结果

• range(10)让循环变量从0一步步变为9

mysum = 0

for i in range(10):

mysum += i

print(mysum)

for loops

n 修改以下代码，让它执行累加操作，从start加到end（包含start和end），如

start=3，end=5，那么结果输出12

mysum = 0

start = ??

end = ??

for i in range(start, end):

mysum += i

print(mysum)

for loops

n 分别用while和for循环实现阶乘

之前见过了

for循环只在给定序列的长度内按顺序重复

for loops

n 两种循环的总结：

• While loops：

• 只要条件为True就一直重复

• 需要确保不要陷入无限循环

• For loops：

• 可以在一定范围的数字内重复

• 还可以在其他一些数据类型上进行循环（字符串、列表等）

for loops

n 想要跳出循环怎么办：

• break语句：
while <condition_1>:

while <condition_2>:
 <expression_a>
 break
 <expression_b>
<expression_c>

• 立刻跳出循环

• 跳过代码块中剩余的语句

• 只退出当前所在的循环代码块

for loops

n 想要跳出循环怎么办：

• break语句：
mysum = 0
for i in range(5, 11, 2):

mysum += i
if mysum == 5:
 break
 mysum += 1

print(mysum)

以上代码break退出到哪里？输出什么？

for loops

n 分别用以下range序列编写for循环代码，计算并打印出有几个偶数。

• range(5)

• range(5,6)

• range(2,9,3)

for loops

n 用代码检查一个字符串中是否有字母 i 或者 u

用range遍历字符串的index

直接遍历字符串中的字母

直接遍历字符串中的字母
（更简洁的代码）

for loops

n 编写一个程序，让用户输入一个小写的字符串，统计出有几个不一样的字母

n 例如：用户输入“abca”，程序输出3

n 提示：

• 遍历输入字符串的每一个字母

• 声明一个临时字符串变量

• 如果当前字母没有在已出现的字母中，将它追加到临时字符串变量上

• 遍历完后给出临时字符串变量的长度

n 展示出用户选择的一个正整数的所有因数

num = int(input("Enter a positive integer: "))

for divisor in range(1, num + 1):

if num % divisor == 0:

print(f"{divisor} is a factor of {num}")

More Loop Examples

n 运行一个无限循环，直到用户输入了“q”或者“Q”

while True:

user_input = input('Type "q" or "Q" to quit: ')

if user_input.upper() == "Q":

break

More Loop Examples

n 展示所有从1到50的数字，除了3的倍数

for i in range(1, 51):

if i % 3 == 0:

continue

print(i)

More Loop Examples

n 模拟10000次摇骰子，并展示出要到数字的平均数

from random import randint

num_rolls = 10_000

total = 0

for trial in range(num_rolls):

 total = total + randint(1, 6)

avg_roll = total / num_rolls

print(f"The average result of {num_rolls} rolls is

{avg_roll}")

More Loop Examples

n 让用户输入一个整数，如果用户输入的不是整数就重复让用户尝试

while True:

try:

my_input = input("Type an integer: ")

print(int(my_input))

break

except ValueError:

print("try again")

More Loop Examples

n 让用户输入一个字符串，再让用户输入一个索引值，打印出索引位置的字符

input_string = input("Enter a string: ")

try:

index = int(input("Enter an integer: "))

print(input_string[index])

except ValueError:

print("Invalid number")

except IndexError:

print("Index is out of bounds")

More Loop Examples

Chapter 3: Guess and Check

n 很多场景中需要循环去检查一个逻辑是否正确

n 可以被抽象为 guess and check 的过程

第一次猜

结束

猜下一次

这次猜对
了吗？

yes

no

Guess and Check

n Guess and Check

n 例如：给定一个int整数x，需要找出另一个整数是x的平方根

n 先猜一个数字，再检查它是否是答案，依此循环

Guess and Check

n Guess and Check

n 例如：给定一个int整数x，需要找出另一个整数是x的平方根

n 先猜一个数字，再检查它是否是答案，依此循环

n 我们打算从0开始猜，然后1，2，…

n 如果x是一个平方数，我们总会找到它的平方根的

Guess and Check

n Guess and Check

n 例如：给定一个int整数x，需要找出另一个整数是x的平方根

n 先猜一个数字，再检查它是否是答案，依此循环

n 我们打算从0开始猜，然后1，2，…

n 如果x不是一个平方数怎么办？

n 需要告诉计算机什么时候停止，比如猜的数的平方大于x就停

Guess and Check

n Guess and Check

n 例如：给定一个int整数x，需要找出另一个整数是x的平方根

n 希望用while循环实现以上逻辑
guess = 0
x = int(input("Enter an integer: "))
while guess**2 < x:

guess = guess + 1
if guess**2 == x:

print("Square root of", x, "is", guess)
else:

print(x, "is not a perfect square")

给出了停止猜的条件

输出了停止猜的原因

输出了停止猜的原因

Guess and Check

n Guess and Check

n 例如：给定一个int整数x，需要找出另一个整数是x的平方根

n 这个过程适用于所有整数吗？

n 如果x是负数怎么办？

while循环直接退出

n 希望能处理负数的情况，让程序有不同的表现

Guess and Check

n Guess and Check

n 例如：给定一个int整数x，需要找出另一个整数是x的平方根

n 还是用while循环实现
guess = 0
neg_flag = False
x = int(input("Enter a positive integer: "))
if x < 0:

neg_flag = True
while guess**2 < x:

guess = guess + 1
if guess**2 == x:

print("Square root of", x, "is", guess)
else:

print(x, "is not a perfect square")
if neg_flag:

print(“Just checking... did you mean”, -x, “?”)

设置变量标记是否为负数

判断负数并修改标记

针对负数给出停止猜的原因

Guess and Check

n Guess and Check

第一次猜

break循环，结束

猜下一次

这次猜对
了吗？

yes

no

while 循环 for 循环

不做什么

猜完了所有值，结束

检查是否猜对

按序列顺序
猜每一个

遍历完成

还没猜完

Guess and Check

n 编写一段代码，用户给出一个数字，然后循环从1到10，如果找到了这个数字就

输出它，否则就输出没找到的信息

n 你可以选择用while循环还是for循环来实现，也可以都写出来

n 提示：可以设置一个布尔类型的变量来标记是否找到了

Guess and Check

n Guess and Check

n 例如：给定一个int整数x，需要找出另一个整数是x的立方根

n 用for循环怎么写？

x = int(input("Enter an integer: "))

for guess in range(x+1):

if guess**3 == x:

 print(”Cube root of", x, "is", guess)

可以处理x=1的情况，注意range的设置

Guess and Check

n Guess and Check

n 例如：给定一个int整数x，需要找出另一个整数是x的立方根

n 如何处理x为负数的情况？
x = int(input("Enter an integer: "))
for guess in range(abs(x)+1):

if guess**3 == abs(x):
 if x < 0:
 guess = -guess
 print("Cube root of "+str(x)+" is "+str(guess))

使用绝对值函数，假设x为正数

找到了立方根，如果x为负数，再转为负数

Guess and Check

n Guess and Check

n 例如：给定一个int整数x，需要找出另一个整数是x的立方根

n 好像还可以更快一点？输出信息更丰富一些？
x = int(input("Enter an integer: "))
for guess in range(abs(x)+1):

if guess**3 >= abs(x):
break

if guess**3 != abs(x):
print(x, "is not a perfect cube")

else:
if x < 0:

guess = -guess
print("Cube root of "+str(x)+" is "+str(guess))

只要超过了x的正数就停止猜

停止猜的原因：不是立方数

处理负数的情况

Guess and Check

n Guess and Check

n 另一个例子：三元一次方程

A、B、C三个人卖票

B比A卖的少2张

C卖的是A的2倍

三个人一共卖出去10张

问：A卖出去几张？

Guess and Check

n Guess and Check

n 另一个例子：三元一次方程
for a in range(11):
 for b in range(11):
 for c in range(11):

 total = (a + b + c == 10)
 two_less = (b == a-2)
 twice = (c == 2*a)
 if total and two_less and twice:
 print(f"A sold {a} tickets")

 print(f"B sold {b} tickets")
 print(f"C sold {c} tickets")

检查三个人的每一种数量组合

在每一种组合下设定约束条件

如果某一种组合满足约
束条件就找到了答案

Guess and Check

n Guess and Check

n 另一个例子：三元一次方程

• 如果总票数很大，组合情况以指数递增（n的三次方），循环很慢

• 如何减少循环次数呢？

• 我们发现B和C的卖票数都可以通过A的票数计算得到

• 只对A进行循环即可

Guess and Check

n Guess and Check

n 另一个例子：三元一次方程

for a in range(1001):

 b = max(a - 2, 0)

 c = a * 2

 if b + c + a == 1000:

 print("A sold " + str(a) + " tickets")

 print("B sold " + str(b) + " tickets")

 print("C sold " + str(c) + " tickets")

Guess and Check

Chapter 4: Approximation

n Approximation——趋近

n 还是之前的猜数字过程

n 精准的答案可能没法得到（谁的平方是10？3还不到，4超过了）

n 需要给出一个方法得到一个足够接近真实答案的结果

n 利用浮点数（float）

Approximation

n Approximation——趋近

n 用浮点数来做的话，什么是一个足够好的答案呢？

• 找到一个数字g，g*g的结果与x足够接近 |g**2 - x| < epsilon

n 利用浮点数找平方根的算法：

• 先猜一个数字g

• 每次让g增加一个较小的值increment，重新猜一次

• 检查是否g**2与x足够接近（|g**2 - x| < e）

• 循环猜和检查直到足够接近x

Approximation

n Approximation——趋近

n 需要设定两个参数：

• 当前猜的数字举例答案有多近时停止（epsilon）

• 每次增加多少去接近答案（increment）

n 这两个参数的设置也决定了算法的性能：速度、精度

• increment越小，程序达到目标的速度越慢，但能得到更精确的结果

• epsilon越大，得到的结果精度越低，但程序能更快达到目标

Approximation

n Approximation——趋近

n 具体实现：
x = 36
epsilon = 0.01
num_guesses = 0
guess = 0.0
increment = 0.0001
while abs(guess**2 - x) >= epsilon:
 guess += increment
 num_guesses += 1
print('num_guesses =', num_guesses)
print(guess, 'is close to square root of', x)

思考一下：这个循环是否总能退出？

Approximation

n Approximation——趋近

n 可以尝试不同的x来查看结果和执行过程的区别

• 如果x=36，要猜大约60000次

• 如果x为以下数字，会发生什么？

Ø 24
Ø 2

Ø 12345
Ø 54321

Approximation

n Approximation——趋近

n 可以尝试不同的x来查看结果和执行过程的区别

• 例如x=54321（当x足够大时）

• 蓝色箭头代表猜的数字

• 绿色箭头代表猜的数字的平方

• abs(guess**2 - x)永远大于epsilon （x越大，当接近x时的跨度越大）

Approximation

n Approximation——趋近

n 怎么调整代码让它按预期退出循环并输出对应的信息？
x = 54321
epsilon = 0.01
numGuesses = 0
guess = 0.0
increment = 0.0001
while abs(guess**2 - x) >= epsilon and guess**2 <= x:
 guess += increment
 numGuesses += 1
print('numGuesses =', numGuesses)
if abs(guess**2 - x) >= epsilon:
 print('Failed on square root of', x)
else:
 print(guess, 'is close to square root of', x)

当猜的数字的平方超过了目标就退出循环

退出了循环但没找到符合条件的平方根

退出了循环且找到了符合条件的平方根

Approximation

n Approximation——趋近

n 现在也有缺点：会因为平方值超过了目标而输出寻找失败

n 还可以降低increment为0.00001，会检查更多的值，但会拖慢程序

n 而且浮点数小数位较多后，浮点数之间的比较可能产生问题

Approximation

n Approximation——趋近算法的总结

• 需要注意循环不能跳过退出条件导致无限循环下去

• 需要注意程序运行效率和计算精度之间的权衡

• 需要在设置参数时考虑结果离正确答案多接近，以及每次更新多大幅度

• 有没有更快且更加准确的方法？

Approximation

n 二分查找法（Bisection Search）

• 想象一个游戏，有人在一本448页的书里夹了一张百元钞票，如果你能在8次

内猜中在哪一页，钞票就归你了，否则就宣布失败。

• 你能成功的概率大概是1/56

• 如果你每次猜完都有人告诉你猜对了、页数太大、页数太小呢？

• 你能成功的概率大概是1/3

Approximation

n 二分查找法（Bisection Search）

• 假设我们知道答案处于某个区间之内

• 那么我们每次猜这个区间中间那个值

• 如果没猜中，检查比中间这个值大还是小

• 更新猜的区间

• 重复以上步骤

n 之前的猜数字算法：每次把搜索区间从N降为N-1

n 现在的二分查找法：每次把搜索区间从N将为N/2

Approximation

n 二分查找法（Bisection Search）

• 之前的猜数字游戏：

一个挨着一个检查答案，猜的过程是线性变化的（linear）

• 二分查找：

一半一半地检查答案，猜的过程是对数变化的（logarithmic）

• 对数变化的算法效率更高！

Approximation

n 二分查找法（Bisection Search）

• 同样是猜数字游戏

• 假设我们知道答案位于0和x之间

• 我们选取一个处于中间的值作为猜的数字

Approximation

n 二分查找法（Bisection Search）

• 如果猜的数字的平方与x足够接近，那我们很幸运直接找到了答案

• 如果猜的数字的平方与x不够接近，那这个数字是太大了还是太小了？

如果g**2 > x，我们知道g太大了，那继续猜一个新的g

新的g是0到原来g的一半

Approximation

n 二分查找法（Bisection Search）

• 如果猜的数字的平方与x足够接近，那我们很幸运直接找到了答案

• 如果猜的数字的平方与x不够接近，那这个数字是太大了还是太小了？

如果g**2 < x，那我们知道g太小了，继续猜下一个g

下一个g是上一个g和第一次g的一半

Approximation

n 二分查找法（Bisection Search）

• 如果猜的数字的平方与x足够接近，那我们很幸运直接找到了答案

• 如果猜的数字的平方与x不够接近，那这个数字是太大了还是太小了？

如果g**2 < x，我们知道它还是太小了，继续猜它和第一个g的一半

在每一步，降低搜索的空间为上一步的一半，直到它的平方离x足够近

Approximation

n 二分查找法（Bisection Search）

• 二分查找法可行的关键：

1. 搜索空间是有顺序，可以按顺序查找

2. 我们可以判断猜的数字太大还是太小

Approximation

n 尝试给出以下搜索算法的代码：

n 问题1:猜一个4位数字的密码，唯一的反馈是每次告诉你猜的正确还是错误，

你可以用二分查找法找到这个密码吗？

n 问题2:猜一个0到10之间的任意精度的小数，可以获得的反馈是每次告诉你正

确、太大、太小，你可以用二分查找法找到这个小数吗？

n 请给出以上问题是否可用二分查找解决，如果可以，请尝试给出代码。

Approximation

n 二分查找法（Bisection Search）

• 之前猜数字的算法代码
x = 54321
epsilon = 0.01
num_guesses = 0
guess = 0.0
increment = 0.00001
while abs(guess**2 - x) >= epsilon and guess**2 <= x:
 guess += increment
 num_guesses += 1
print('num_guesses =', num_guesses)
if abs(guess**2 - x) >= epsilon:
 print('Failed on square root of', x)
else:
 print(guess, 'is close to square root of', x)

Approximation

n 二分查找法（Bisection Search）

• 我们尝试用二分查找法改写代码
x = 54321
epsilon = 0.01
num_guesses = 0

while abs(guess**2 - x) >= epsilon:

 num_guesses += 1
print(guess, 'is close to square root of', x)

定义一些二分查找法需要的变量

每次重复执行一些步骤

Approximation

n 二分查找法（Bisection Search）

• 我们尝试用二分查找法改写代码
x = 54321
epsilon = 0.01
num_guesses = 0
low = 0
high = x
guess = (high + low)/2.0
while abs(guess**2 - x) >= epsilon:

 num_guesses += 1
print(guess, 'is close to square root of', x)

定义了初始化的最大和最小值，以及第一次猜的数字

Approximation

n 二分查找法（Bisection Search）

• 我们尝试用二分查找法改写代码
x = 54321
epsilon = 0.01
num_guesses = 0
low = 0
high = x
guess = (high + low)/2.0
while abs(guess**2 - x) >= epsilon:
 if guess**2 < x:

else:

 num_guesses += 1
print(guess, 'is close to square root of', x)

定义了初始化的最大和最小值，以及第一次猜的数字

检查每次猜的数字的平方是太大还是太小

Approximation

n 二分查找法（Bisection Search）

• 我们尝试用二分查找法改写代码
x = 54321
epsilon = 0.01
num_guesses = 0
low = 0
high = x
guess = (high + low)/2.0
while abs(guess**2 - x) >= epsilon:
 if guess**2 < x:
 low = guess

else:

 num_guesses += 1
print(guess, 'is close to square root of', x)

定义了初始化的最大和最小值，以及第一次猜的数字

如果太小，设置区间的下限为当前猜的数字

Approximation

n 二分查找法（Bisection Search）

• 我们尝试用二分查找法改写代码
x = 54321
epsilon = 0.01
num_guesses = 0
low = 0
high = x
guess = (high + low)/2.0
while abs(guess**2 - x) >= epsilon:
 if guess**2 < x:
 low = guess

else:
 high = guess

 num_guesses += 1
print(guess, 'is close to square root of', x)

定义了初始化的最大和最小值，以及第一次猜的数字

如果太小，设置区间的下限为当前猜的数字

如果太大，设置区间的上限为当前猜的数字

Approximation

n 二分查找法（Bisection Search）

• 我们尝试用二分查找法改写代码
x = 54321
epsilon = 0.01
num_guesses = 0
low = 0
high = x
guess = (high + low)/2.0
while abs(guess**2 - x) >= epsilon:
 if guess**2 < x:
 low = guess

else:
 high = guess

 guess = (high + low)/2.0
 num_guesses += 1
print(guess, 'is close to square root of', x)

定义了初始化的最大和最小值，以及第一次猜的数字

如果太小，设置区间的下限为当前猜的数字

如果太大，设置区间的上限为当前猜的数字

在新的区域之间猜一个数字

Approximation

n 如果x是一个0和1之间的小数怎么办？请尝试修改填入以下初始条件
x = 0.5
epsilon = 0.01

guess = (high + low)/2
while abs(guess**2 - x) >= epsilon:
 if guess**2 < x:
 low = guess
 else:
 high = guess
 guess = (high + low)/2.0
print(f'{str(guess)} is close to square root of {str(x)}')

请选择合适的上下限区间

Approximation

n 总结一下

• 很多场景中，我们需要通过趋近的方式找到一个足够好的答案

Ø 浮点数在计算机中进行比较时，不能用==，而需要通过足够接近来比较

• 二分查找法相比逐一遍历更快，但是需要满足一些条件：

Ø 需要上下限构成的搜索区间

Ø 需要搜索区间是有顺序的

Ø 需要每次猜完有反馈（正确、太大、太小）

Approximation

Reading and QA Time

See you next week !

