
Python程序设计与实践

专业高级技术拓展

第四课：抽象与函数

2025.3

Today

n 抽象化思维

n 函数的编写

n 函数作为对象

n 函数的其他用法

Functions

n 抽象化的一个例子：手机
• 对用户来说是一个黑盒子，人们只需要关注：

Ø 它的输入：触屏点击

Ø 它的输出：执行功能

Ø 输出与输入的映射关系（无需知道内部原理）

Ø 实现过程是模糊的

Functions

n 抽象化使复杂问题分解为简单任务
• 一只手机有一百多个组成部分

• 每个部分由不同的企业设计和生产

• 每个部分的制造商需要知道它与其他部分的交互关系

• 每个部分的制造商可以独立解决他们的子问题

• 对于硬件和软件部分都是一样的逻辑

Functions

n 抽象化（abstraction）：

• 将功能封装成“黑盒子”，只需了解它的功能、输入、输出

n分解（decomposition）：

• 将复杂任务分为多个组成部分，每个部分专注于解决一个子问题

n抽象化和分解让复杂的问题简单化，让不同的角色专注于不同的子问题，

促进分工合作，提升用户体验

n我们需要将抽象化和分解应用到编程中

Functions

n 抽象化
• 在编程中，考虑让一段代码成为一个“黑盒子”，从而

Ø 把繁杂的代码细节对用户隐藏起来（对用户）

Ø 在其他代码中重复使用这段代码的功能（对开发者）

• 编程人员需要编写细节后，设计对外的交互接口

• 使用人员往往不需要看到这些细节

Functions

n 抽象化
• 抽象化的实现需要用到函数（function）

• 一个函数让我们获取到一段代码的能力而无需知道代码细节

• 一旦创建了函数，它将实现从某种输入到某种输出的能力，同时隐藏

它是如何实现这种过程的细节

• 我们之前用到了一些函数：

Ø max(1, 4)

Ø abs(-3)

Ø len(“happy birthday”)

Functions

n 抽象化
• 一个创建好的函数有它自己的规格（specifications），展示在

python说明文档（docstrings）中

• 一般定义一个新函数，要给出它的说明文档

• 通过.__doc__可以获取一个函数的说明文档
def multiply_numbers(a, b):
 """
 Multiplies two numbers and returns the result.
 Args:
 a (int): The first number.
 b (int): The second number.
 Returns: int: The product of a and b.
 """
 return a * b

Functions

n 通过分解创建逻辑结构
• 采用抽象化的函数，将代码分为若干个模块

• 模块可以：

Ø 将代码切割为逻辑片段

Ø 让代码有效组织

Ø 让代码连贯易读

• 创建函数是实现任务分解的一种手段（另一种是类）

• 进而让复杂的问题由一系列简单的功能组成

Functions

n函数
• 一段可以被重复使用的代码

• 实现了一系列计算步骤

• 可以输入任何满足要求的数据

Functions

n函数
• 定义一个函数实际在告诉Python，一段代码现在需要存在内存中

• 函数只有在运行（被调用）时才是有实际作用的

• 你只需要编写一次该函数，便可以运行它无数次

Functions

n函数的一些特性
• 函数具有一个名字：一个变量被绑定到了一个函数对象上

• 函数具有一些参数：输入的数据要求，0个或多个

• 函数具有一个说明文档：可选但是建议写，用三个隐含包裹，提供了

函数的规格说明（功能、输入、输出等），用__doc__可以获取

• 函数具有一个函数体：一系列代码指令，在函数被调用时执行

• 函数通常需要返回一些数据：用return关键字

Functions

n如何编写一个函数
def is_even(i):

"""
Input: i, a positive int
Returns True if i is even, otherwise False
"""
if i%2 == 0:

return True
else:

return False

Functions

n如何思考怎么编写一个函数
• 先想清楚函数要实现的功能是什么

• 例如：提供一个整数i，判断它是否为偶数

• 用这些信息来写函数名和它的说明文档

def is_even(i):
"""
Input: i, a positive int
Returns True if i is even, otherwise False
"""

Functions

n如何思考怎么编写一个函数
• 再思考如何解决这个问题

• 针对这个例子：可以看这个数字除以2之后余数是否为0

• 再思考你要让函数返回一个什么值
def is_even(i):

"""
Input: i, a positive int
Returns True if i is even, otherwise False
"""
if i%2 == 0:
 return True
else:
 return False

Functions

n如何思考怎么编写一个函数
• 最后考虑下怎么让这个函数更简洁

• 针对这个例子：i%2==0返回的就是True或False

def is_even(i):
"""
Input: i, a positive int
Returns True if i is even, otherwise False
"""
return i%2 == 0

Functions

n如何调用一个函数
• 只需要提供函数名，并提供符合要求的参数即可

is_even(3)

is_even(8)

• 调用后的结果就是return出来的值

Functions

n当调用一个函数时，发生了什么
• Python将函数的参数变量替换为输入的值

• 然后用这个值去执行函数体中的代码

• 最后用计算的结果代替函数调用的代码

def is_even(i):

return i%2 == 0

is_even(3)

i 被 3 代替

执行3%2 == 0 得到False

把调用函数的表达式用False代替

Functions

n编写一段代码满足以下规格：
def div_by(n, d):
 """
 n 和 d 为整数且 > 0
 返回 True 如果 d 可以整除 n ，否则返回False
 """

测试你的代码：

• n = 10 and d = 3
• n = 195 and d = 13

Functions

n直观感受函数在程序中的角色
def is_even(i):

 print("inside is_even")

 return i%2 == 0

a = is_even(3)

b = is_even(10)

c = is_even(123456)

均在主程序中运行

Functions

n将函数嵌入到代码中
• 函数调用会被返回的值替换掉

print("Numbers between 1 and 10: even or odd")

for i in range(1,10):

 if is_even(i):

 print(i, "even")

 else:

 print(i, "odd")

替换为True或False

Functions

n一个编写函数的例子
• 假设我们希望实现将两个数字之间的所有奇数相加（包括两个数字）

• 我们需要定义一个函数实现这个功能

• 输入是什么？a和b的值

• 输出是什么？sum_of_odds

Functions

n一个编写函数的例子
• 假设我们希望实现将两个数字之间的所有奇数相加（包括两个数字）

• 不要马上开始写代码，先仔细分析问题

• 不妨先举几个例子推算一下

• 假如a=2，b=4会怎样？

• sum_of_odds为3

Functions

n一个编写函数的例子
• 假设我们希望实现将两个数字之间的所有奇数相加（包括两个数字）

• 不要马上开始写代码，先仔细分析问题

• 不妨先举几个例子推算一下

• 假如a=2，b=7会怎样？

• sum_of_odds为15

Functions

n一个编写函数的例子
• 假设我们希望实现将两个数字之间的所有奇数相加（包括两个数字）

• 不要马上开始写代码，先仔细分析问题

• 不妨降低一下问题的难度

• 一个类似但简单的问题是：

• 将两个数字之间的所有数字相加

Functions

n一个编写函数的例子
• 假设我们希望实现将两个数字之间的所有奇数相加（包括两个数字）

• 一个类似但简单的问题是：

• 将两个数字之间的所有数字相加

• 要遍历一个范围内的每一个数字

• 需要用到循环，for 或者 while都行

• 我们试试用循环实现解决这个问题

Functions

n一个编写函数的例子
• 假设我们希望实现将两个数字之间的所有奇数相加（包括两个数字）

• 一个类似但简单的问题是：

• 将两个数字之间的所有数字相加

for 循环 while 循环

先把循环结构写出来

Functions

n一个编写函数的例子
• 假设我们希望实现将两个数字之间的所有奇数相加（包括两个数字）

• 一个类似但简单的问题是：

• 将两个数字之间的所有数字相加

for 循环 while 循环

再把累加过程写出来

Functions

n一个编写函数的例子
• 假设我们希望实现将两个数字之间的所有奇数相加（包括两个数字）

• 一个类似但简单的问题是：

• 将两个数字之间的所有数字相加

for 循环 while 循环

加一个初始化的操作

Functions

n一个编写函数的例子
• 假设我们希望实现将两个数字之间的所有奇数相加（包括两个数字）

• 一个类似但简单的问题是：

• 将两个数字之间的所有数字相加

for 循环 while 循环

打印出函数结果测试一下

Functions

n一个编写函数的例子
• 假设我们希望实现将两个数字之间的所有奇数相加（包括两个数字）

• 一个类似但简单的问题是：

• 将两个数字之间的所有数字相加

for 循环 while 循环

也可以在函数中添加打印来测试

这里少了结尾数字

Functions

n一个编写函数的例子
• 假设我们希望实现将两个数字之间的所有奇数相加（包括两个数字）

• 一个类似但简单的问题是：

• 将两个数字之间的所有数字相加

for 循环 while 循环

修改代码让它正确执行预期逻辑

Functions

n一个编写函数的例子
• 假设我们希望实现将两个数字之间的所有奇数相加（包括两个数字）

• 现在我们可以实现对奇数的累加过程了

for 循环 while 循环

添加检测奇数的逻辑

Functions

n一个编写函数的例子
• 假设我们希望实现将两个数字之间的所有奇数相加（包括两个数字）

• 现在我们可以实现对奇数的累加过程了

for 循环 while 循环

测试另一个例子看是否正确

Functions

n编写函数要注意的：
• 先别着急写代码，先对问题进行分析，明确输入输出，找几个例子试一试

• 可以先实现一个简化版的问题，一步步去达到目标

• 在实现的过程中多停下来测试是否按预期的逻辑执行

• 实现完多测试几个例子看是否完全正确，是否考虑了边界情况

Functions

n编写一段代码满足以下规格要求（经典问题——回文）
def is_palindrome(s):

 """ s is a string

 Returns True if s is a palindrome and False otherwise

 """

• 举例：

Ø 如果s=“222”，返回True

Ø 如果s=“wasitacaroracatisaw”，返回True

Ø 如果s=“abc”，返回False

Functions

n函数的返回：
• 函数总是返回一些信息的，用return关键字
def is_even(i):
 """
 Input: i, a positive int
 Returns True if i is even and False otherwise
 """
 return i%2 == 0

Functions

n函数的返回：
• 如果没有return会怎样
def is_even(i):
 """
 Input: i, a positive int
 Returns True if i is even and False otherwise
 """
 i%2 == 0

• 如果没有使用return，Python会返回一个None值

• 如果调用这个函数并打印它的值，不会输出任何结果，也不会报错

• 相当于在最后加了一行 return None

Functions

n自己试试以下代码，用.py文件执行，看看输出什么
def add(x,y):

 return x+y

def mult(x,y):

 print(x*y)

add(1,2)

print(add(2,3))

mult(3,4)

print(mult(4,5))

Functions

n对比一下 return 和 print

return print

return只在函数中才有意义 print在函数内外都可以使用

在一次函数调用时只有一个return被执行 在一次函数调用时可以执行多次print

在执行return后，剩下的代码不会被执行 执行了print后还可以继续执行后续代码

return的结果可以替换调用函数的代码 print的结果只输出到终端中展示
print自己也有返回值None

Functions

n尝试修改以下代码让它按照说明文档执行
def is_triangular(n):
 """ n is an int > 0
 Returns True if n is triangular, i.e. equals a continued
 summation of natural numbers (1+2+3+...+k), False otherwise
 """
 total = 0
 for i in range(n):
 total += i
 if total == n:
 print(True)
 print(False)

Functions

n回顾下之前做二分查找平方根的例子，将它写成函数
def bisection_root(x):
 epsilon = 0.01
 low = 0
 high = x
 ans = (high + low)/2.0
 while abs(ans**2 - x) >= epsilon:
 if ans**2 < x:
 low = ans
 else:
 high = ans
 ans = (high + low)/2.0
 print(ans, 'is close to the root of', x)
 return ans

初始化变量

循环搜索

打印信息，返回结果

如果猜的数字不够接近

根据猜的数字太小或太大
更新上限或下限

重新猜一个数字

Functions

n回顾下之前二分查找平方根的例子，将它写成函数
• 现在我们可以调用这个函数来计算不同数字的平方根了

print(bisection_root(4))

print(bisection_root(123))

Functions

n利用写好的平方根查找函数来实现复杂的逻辑
• 实现一个函数，打印出平方根接近10的数字个数

def count_nums_with_sqrt_close_to_10 (epsilon):
 """ epsilon is a positive number < 1
 Returns how many integers have a square root within epsilon of 10
 """

count = 0
n = 1
while bisection_root(n)-10 < epsilon:

if math.abs(bisection_root(n)-10) < epsilon:
count += 1

n += 1
return count

Functions

n函数的作用域（function scope）
• Python在调用一个函数时在做些什么？

• Python在调用每一个函数时会创建一个临时的“小环境”

Ø 这个小环境会使用赋予它的参数来执行程序

Ø 执行完函数体的代码后会返回一个值

Ø 这个小环境会在返回值后消失

Functions

n函数的作用域（function scope）
• 全局环境（Global Environment）：

• 用户与Python交互的地方

• Python程序启动的地方

• 调用函数相当于临时创建一个新环境

• 这个环境是函数的作用域

Functions

n函数的作用域（function scope）
• 函数的作用域是变量名与数据对象的映射有效区域

• 在一个函数作用域内使用正式定义的参数进行计算

• 在一个函数作用域外使用实际传入的参数进行调用
def f(x):
 x = x + 1
 print('in f(x): x =', x)
 return x

x = 3
z = f(x)

正式定义的参数

实际传入的参数，名称可以任意

函数的作用域

全局的作用域

Functions

n函数的作用域（function scope）
• 当我们执行一个Python程序，是从全局作用域开始的

• 已经定义的函数会先加载到全局作用域中

def f(x):
 x = x + 1
 print('in f(x): x =', x)
 return x

x = 3

z = f(x)

从这里开始执行

Functions

n函数的作用域（function scope）
• 当我们执行一个Python程序，是从全局作用域开始的

• 已经定义的函数会先加载到全局作用域中

def f(x):
 x = x + 1
 print('in f(x): x =', x)
 return x

x = 3

z = f(x)
执行到这里

Functions

n函数的作用域（function scope）
• 当我们执行一个Python程序，是从全局作用域开始的

• 已经定义的函数会先加载到全局作用域中

执行到函数时，进入到函数作用域

Functions

n函数的作用域（function scope）
• 当我们执行一个Python程序，是从全局作用域开始的

• 已经定义的函数会先加载到全局作用域中

def f(x):
 x = x + 1
 print('in f(x): x =', x)
 return x

y = 3

z = f(y)

全局环境的变量名与函数无关，只有值是相关的

Functions

n函数的作用域（function scope）
• 当我们执行一个Python程序，是从全局作用域开始的

• 已经定义的函数会先加载到全局作用域中

在函数作用域中执行代码并输出结果

Functions

n函数的作用域（function scope）
• 当我们执行一个Python程序，是从全局作用域开始的

• 已经定义的函数会先加载到全局作用域中

函数调用的返回值替换掉全局作用域中的调用位置

Functions

n函数的作用域（function scope）
• 当我们执行一个Python程序，是从全局作用域开始的

• 已经定义的函数会先加载到全局作用域中

def f(x):
x = x + 1
print('in f(x): x =', x)
return x

x = 3
z = f(x)

这时候在全局作用域中打印x的值，输出的仍是3

Functions

n函数的作用域（function scope）
• 在一个函数内部，可以定义一个跟在外部同名的变量

• 在一个函数内部，可以访问在外部定义的变量

• 在一个函数内部，不能修改在外部定义的变量
def f(y):
 x = 1
 x += 1
 print(x)
x = 5
f(x)
print(x)

2
5

同名但作用域不同

def g(y):
 print(x)

print(x+1)
x = 5
g(x)
print(x)

5
6
5

在函数作用域访问外部变量

def h(y):
 x += 1

x = 5
h(x)
print(x)

Error
Local variable ‘x’
referenced before
assignment

在函数作用域
不能修改外部变量

Functions

n函数作为参数
• Python中的对象拥有类型

int, float, str, Boolean, NoneType, function

• 对象既可以作为参数也可以作为返回值

• 函数也是对象之一，与其他类型的对象拥有类似的特性

• 在Python中任何事物都是对象

Functions

n函数作为参数
def is_even(i):

 return i%2 == 0

r = 2

pi = 22/7

my_func = is_even

a = is_even(3)

b = my_func(4)

不是函数调用，
只是名字绑定

都是函数调用

Functions

n函数作为参数

def calc(op, x, y):
 return op(x,y)

def add(a,b):
 return a+b

def div(a,b):
 if b != 0:
 return a/b
 print("Denominator was 0.")

res = calc(add, 2, 3)

Functions

n函数作为参数

def calc(op, x, y):
 return op(x,y)

def add(a,b):
 return a+b

def div(a,b):
 if b != 0:
 return a/b
 print("Denominator was 0.")

Res = calc(add, 2, 3)

在全局作用域函数调用

Functions

n函数作为参数

def calc(op, x, y):
 return op(x,y)

def add(a,b):
 return a+b

def div(a,b):
 if b != 0:
 return a/b
 print("Denominator was 0.")

Res = calc(add, 2, 3)
函数对象

Functions

n函数作为参数

def calc(op, x, y):
 return op(x,y)

def add(a,b):
 return a+b

def div(a,b):
 if b != 0:
 return a/b
 print("Denominator was 0.")

res = calc(add, 2, 3)

等于 return add(2, 3)
相当于将每一个变量
替换为实际的对象

Functions

n函数作为参数

def calc(op, x, y):
 return op(x,y)

def add(a,b):
 return a+b

def div(a,b):
 if b != 0:
 return a/b
 print("Denominator was 0.")

res = calc(add, 2, 3)

在calc作用域执行函数调用

Functions

n函数作为参数

def calc(op, x, y):
 return op(x,y)

def add(a,b):
 return a+b

def div(a,b):
 if b != 0:
 return a/b
 print("Denominator was 0.")

res = calc(add, 2, 3)

调用add函数，传入2和3参数

Functions

n函数作为参数

def calc(op, x, y):
 return op(x,y)

def add(a,b):
 return a+b

def div(a,b):
 if b != 0:
 return a/b
 print("Denominator was 0.")

res = calc(add, 2, 3)

返回5

return 5

Functions

n函数作为参数

def calc(op, x, y):
 return op(x,y)

def add(a,b):
 return a+b

def div(a,b):
 if b != 0:
 return a/b
 print("Denominator was 0.")

res = calc(add, 2, 3)

再返回5

return 5

Functions

n函数作为参数

def calc(op, x, y):
 return op(x,y)

def add(a,b):
 return a+b

def div(a,b):
 if b != 0:
 return a/b
 print("Denominator was 0.")

res = calc(add, 2, 3) 得到5

Functions

n自己尝试下，以下代码res的值是什么？打印出什么？

def calc(op, x, y):
 return op(x,y)

def div(a,b):
 if b != 0:
 return a/b
 print("Denom was 0.")

res = calc(div,2,0)

Functions

n函数作为参数的另一个例子
def func_a():
 print('inside func_a')
def func_b(y):
 print('inside func_b‘)
 return y
def func_c(f, z):
 print('inside func_c‘)
 return f(z)

print(func_a())
print(5 + func_b(2))
print(func_c(func_b, 3))

调用func_a，没有输入参数
调用func_b，输入一个整数参数

调用func_c，输入两个参数，一个函数一个整数

Functions

n函数作为参数的另一个例子
def func_a():
 print('inside func_a')
def func_b(y):
 print('inside func_b‘)
 return y
def func_c(f, z):
 print('inside func_c‘)
 return f(z)

print(func_a())
print(5 + func_b(2))
print(func_c(func_b, 3))

由于没有参数，
没发生变量绑定

Functions

n函数作为参数的另一个例子
def func_a():
 print('inside func_a')
def func_b(y):
 print('inside func_b‘)
 return y
def func_c(f, z):
 print('inside func_c‘)
 return f(z)

print(func_a())
print(5 + func_b(2))
print(func_c(func_b, 3))

在终端打印信息

没有return，返回None

Functions

n函数作为参数的另一个例子
def func_a():
 print('inside func_a')
def func_b(y):
 print('inside func_b‘)
 return y
def func_c(f, z):
 print('inside func_c‘)
 return f(z)

print(func_a())
print(5 + func_b(2))
print(func_c(func_b, 3))

print在终端输出None

Functions

n函数作为参数的另一个例子
def func_a():
 print('inside func_a')
def func_b(y):
 print('inside func_b‘)
 return y
def func_c(f, z):
 print('inside func_c‘)
 return f(z)

print(func_a())
print(5 + func_b(2))
print(func_c(func_b, 3))

2y

func_b scope

None

Functions

n函数作为参数的另一个例子
def func_a():
 print('inside func_a')
def func_b(y):
 print('inside func_b‘)
 return y
def func_c(f, z):
 print('inside func_c‘)
 return f(z)

print(func_a())
print(5 + func_b(2))
print(func_c(func_b, 3))

2y

func_b scope

None
print在终端输出
inside func_b

Functions

n函数作为参数的另一个例子
def func_a():
 print('inside func_a')
def func_b(y):
 print('inside func_b‘)
 return y
def func_c(f, z):
 print('inside func_c‘)
 return f(z)

print(func_a())
print(5 + func_b(2))
print(func_c(func_b, 3))

func_b返回2

Functions

n函数作为参数的另一个例子
def func_a():
 print('inside func_a')
def func_b(y):
 print('inside func_b‘)
 return y
def func_c(f, z):
 print('inside func_c‘)
 return f(z)

print(func_a())
print(5 + func_b(2))
print(func_c(func_b, 3))

print在终端显示7

Functions

n函数作为参数的另一个例子
def func_a():
 print('inside func_a')
def func_b(y):
 print('inside func_b‘)
 return y
def func_c(f, z):
 print('inside func_c‘)
 return f(z)

print(func_a())
print(5 + func_b(2))
print(func_c(func_b, 3))

Print打印相关信息

func_bf

func_c scope

3z

Functions

n函数作为参数的另一个例子
def func_a():
 print('inside func_a')
def func_b(y):
 print('inside func_b‘)
 return y
def func_c(f, z):
 print('inside func_c‘)
 return f(z)

print(func_a())
print(5 + func_b(2))
print(func_c(func_b, 3))

返回3

Functions

n函数作为参数的另一个例子
def func_a():
 print('inside func_a')
def func_b(y):
 print('inside func_b‘)
 return y
def func_c(f, z):
 print('inside func_c‘)
 return f(z)

print(func_a())
print(5 + func_b(2))
print(func_c(func_b, 3))

func_c返回3，打印出3

Functions

n函数的正式形式与涉及角色
def name_of_function(parameters):

””” some specifications ”””

statements

return value # optionally

用户 函数调用者 函数作者

函数涉及的三种角色

Functions

n函数角色场景

def meters_to_cm(meters):

return 100 * meters

def main():

result = meters_to_cm(5.2)

print(result)

terminal

> python m2cm.py
520.0

调用者（coder）

作者（coder）
用户

Functions

n函数角色场景——输出方式的不同
def meters_to_cm_case1(meters):

return 100 * meters

def meters_to_cm_case2(meters):

print(100 * meters)

return print

调用者接收返回值，
可以任意处理

用户在终端看到打印的值

Functions

n函数角色场景——理想的信息流

def example_caller():

data = float(input(“enter: ”))

call_the_function(data)

在调用函数时让
用户输入信息

将输入的信息作
为参数传入函数

Functions

n函数角色场景——理想的信息流

def example_caller():

data = float(input(“enter: ”))

result = call_the_function(data)

 print(result)

在调用函数时让
用户输入信息

将输入的信息作
为参数传入函数

将值返回给调用者

将值打印给用户

Functions

n函数中进行测试——doctest
def factorial(n): """

This function returns the factorial of n Input: n (number to compute the factorial of)
Returns: value of n factorial
Doctests:
>>> factorial(3)
6
>>> factorial(1)
1
>>> factorial(0)
1
"""
result = 1
for i in range(1, n + 1):
result *= i
return result

doctest是python的内置功能，允许开发者将测试

用例嵌入到docstring中，格式符合从终端中复制

过来的形式，>>>后面是调用测试例子，下面一行是

预期的输出，执行测试可以在终端中以命令启动：

python -m doctest fact.py –v

（假设代码存于fact.py文件中）

Functions

n函数中定义函数
def main():

 print("hello world")

 def say_goodbye():

 print("goodbye!")

 say_goodbye()

• 不建议在一个函数中定义另一个函数：

Ø 每次调用外部函数，内部函数都被重新定义一次，增加额外开销

Ø 使代码层级变深，且依赖外部函数变量，增加阅读与维护难度

Ø 内部函数无法直接在外部测试，需要调用外部函数间接验证，增加复杂度

Functions

n函数的总结
• 函数是一种数据对象

Ø 函数拥有类型
Ø 函数可以作为数据被绑定给一个名字
Ø 函数可以作为其他函数的参数
Ø 函数可以作为值被返回给其他函数

• 要注意作用域
Ø 主程序在全局作用域中运行
Ø 函数调用时在一个新的临时作用域中运行

• 恰当地定义函数可以提升代码的可读性，建立多角色代码访问场景

Reading and QA Time

See you next week !

