
Python程序设计与实践

专业高级技术拓展

第六课：推导式、测试调试、文件

2025.4

Today

n 列表推导式

n 函数的特定场景用法

n 测试与调试

n 异常与断言

n 文件的处理

List Comprehensions

n 场景：对一个序列中每一个元素做处理，然后创建一个新列表包含这

些新元素
• 传统的做法：

def f(L):

 Lnew = []

 for e in L:

 Lnew.append(e**2)

 return Lnew

• Python提供了一种更简洁、一行代码表示的方式，叫做列表推导式

新列表

给每个元素施加处理逻辑

List Comprehensions

n 场景：对一个序列中每一个元素做处理，然后创建一个新列表包含这

些新元素

def f(L):

 Lnew = []

 for e in L:

 Lnew.append(e**2)

 return Lnew

Lnew = [e**2 for e in L]新列表

遍历每个元素

施加处理逻辑

施加处理逻辑 遍历每个元素

新列表

List Comprehensions

n 场景：对一个序列中每一个元素做处理，然后创建一个新列表包含这

些新元素

def f(L):

 Lnew = []

 for e in L:

 if e%2==0:

 Lnew.append(e**2)

 return Lnew

新列表

遍历每个元素

施加处理逻辑

在满足条件时处理

Lnew = [e**2 for e in L if e%2==0]

List Comprehensions

n 列表推导式：

[expression for elem in iterable if test]

[e**2 for e in range(6)]

à [0, 1, 4, 9, 16, 25]

[e**2 for e in range(8) if e%2 == 0]

à [0, 4, 16, 36]

[[e,e**2] for e in range(4) if e%2 != 0]

à [[1,1], [3,9]]

List Comprehensions

n 思考以下列表推导式的输出是什么，并尝试执行：
[len(x) for x in ['xy', 'abcd', 7, '4.0'] if type(x) == str]

思考过程：

1. 列表中都有哪些元素？

2. 条件表达式能够筛选出哪些元素？

3. 给这些元素施加处理逻辑后变成什么？

Default Parameter

n 设计函数参数的另一种场景：默认参数值
需求：

1. 想在函数中添加一个参数，它有一个标准用法，输入的参数具有标准值

2. 但是也允许用户修改输入参数的值，保持灵活性

3. 例如：人工智能中训练一个模型用到的参数（最佳实践默认参数）

• 在设计函数时使用默认参数

Default Parameter

n 设计函数参数的另一种场景：默认参数值

def bisection_root(x):
 epsilon = 0.01
 low = 0
 high = x
 guess = (high + low)/2.0
 while abs(guess**2 - x) >= epsilon:
 if guess**2 < x:
 low = guess
 else:
 high = guess
 guess = (high + low)/2.0
 return guess

想保留这个阈值的设定，同时让用户可以选择其他值

def bisection_root(x, epsilon=0.01):
 low = 0
 high = x
 guess = (high + low)/2.0
 while abs(guess**2 - x) >= epsilon:
 if guess**2 < x:
 low = guess
 else:
 high = guess
 guess = (high + low)/2.0
 return guess

Default Parameter

n 设计函数参数的另一种场景：默认参数值

设置默认参数，默认值0.01

print(bisection_root(123))

print(bisection_root(123, 0.5))

忽略默认参数，用0.01

修改默认参数为0.5

Default Parameter

n 设计函数参数的另一种场景：默认参数值
• 注意：在调用函数时默认/关键参数必须放在位置参数的后面

• 调用函数时以下方式都是对的：
bisection_root_new(123)
bisection_root_new(123, 0.001)
bisection_root_new(123, epsilon=0.001)
bisection_root_new(x=123, epsilon=0.1)
bisection_root_new(epsilon=0.1, x=123)

• 以下调用不正确：
bisection_root_new(epsilon=0.001, 123) #error
bisection_root_new(0.001, 123) #no error but wrong
SyntaxError: positional argument follows keyword argument

位置参数（positional argument）

关键参数（keyword argument）

Function Returns Functions

n 函数使用的另一种场景：在函数中返回函数

def is_even(i):

 return i%2 == 0

r = 2

pi = 22/7

my_func = is_even

a = is_even(3)

b = my_func(4)

不是函数调用，
只是变量名绑定

函数调用

Function Returns Functions

n 函数使用的另一种场景：在函数中返回函数

def make_prod(a):

 def g(b):

 return a*b

 return g

在一个函数中定义另一个函数

不是函数调用，只是函数绑定的名称

val = make_prod(2)(3)

print(val)

doubler = make_prod(2)

val = doubler(3)

print(val)

Function Returns Functions

n 函数使用的另一种场景：在函数中返回函数

Function Returns Functions

n 函数使用的另一种场景：在函数中返回函数

Function Returns Functions

n 函数使用的另一种场景：在函数中返回函数

Function Returns Functions

n 函数使用的另一种场景：在函数中返回函数

Function Returns Functions

n 函数使用的另一种场景：在函数中返回函数

Function Returns Functions

n 函数使用的另一种场景：在函数中返回函数

Function Returns Functions

n 函数使用的另一种场景：在函数中返回函数

Function Returns Functions

n 来看另一种情况
def create_funcs():

 funcs = []

 for i in range(3):

 def inner():

 return i

 funcs.append(inner)

 return funcs

f1, f2, f3 = create_funcs()

print(f1(), f2(), f3())

在循环中定义另一个函数

输出什么？

2 2 2

内部定义函数中的变量是在调用时动态获取值的，

并非定义时的值。

Function Returns Functions

n 来看另一种情况
def create_funcs():

 funcs = []

 for i in range(3):

 def inner():

 return i

 funcs.append(inner)

 return funcs

f1, f2, f3 = create_funcs()

print(f1(), f2(), f3())

def inner(i=i):
 return i

内部定义函数中的变量是在调用时动态获取值的，

并非定义时的值。

解决办法：使用默认参数立即获取变量值

0 1 2

Function Returns Functions

n 再来看一种情况
def outer():

 data = []

 def inner(x):

 data.append(x)

 return data

 return inner

外部变量为可变对象

内部对变量修改

调用两次外部函数

[1]

[2]

f1 = outer()

f2 = outer()

print(f1(1))

print(f2(2))

因为每次调用outer()会创建新的data对象

Function Returns Functions

n 再来看一种情况
def outer(data=[]):

def inner(x):

 data.append(x)

 return data

 return inner

默认参数可变

内部对变量修改

调用两次外部函数

[1,2] [1,2]

f1 = outer()

f2 = outer()

print(f1(1), f2(2))

默认参数在多次调用中共享使用（指向同一个list对象）

导致结果意外共享

Testing and Debugging

n 防御式编程：
• 为函数编写规格说明（docstring）

• 模块化编写代码（函数设计）

• 为输入输出检查是否满足条件要求（assertions）

• 测试（testing）

• 按照规格说明比较输入输出是否正确

• 调试（debugging）

• 找到什么事件导致了错误的产生

Testing and Debugging

n 防御式编程：
• 从编程的一开始就把代码设计得易于测试和调试

• 将完整的代码分解为多个模块，每个模块更易于测试和调试

• 记录下每一个模块的预期输入与对应的输出

Testing and Debugging

n 测试的类型：

• 单元测试（Unit Testing）
Ø 验证每一个代码块的功能

Ø 单独测试每一个函数的正确性

• 回归测试（Regression Testing）

Ø 在找到bug后进行测试

Ø 找出在之前没有但是新引入的错误

• 集成测试（Integration Testing）

Ø 测试多个模块连接起来是否正确

Testing and Debugging

n 测试的方法：
• 黑盒测试：关注功能，不关心内部实现（用户视角）

• 白盒测试：关注代码逻辑，覆盖路径（开发者视角）

• 常用工具：

unittest, pytest, doctest, coverage

Testing and Debugging

n 测试的方法：
• 黑盒测试：功能验证为核心

Ø 核心思想：输入 → 输出验证，忽略内部代码结构

Ø 适用场景：功能验收测试、API接口测试
def add(a, b):

 return a + b # 待测试的逻辑

def test_add():

 assert add(2, 3) == 5 # 正常输⼊

 assert add(-1, 1) == 0 # 边界值

 assert add("a", "b") == "ab" # 潜在错误输⼊（需处理异常）

Assert：断言，后面跟表达式

如果表达式为True，直接跳过

如果表达式为False，返回AssertionError

Testing and Debugging

n 测试的方法：
• 黑盒测试：功能验证为核心
def sqrt(x, eps):
""" Assumes x, eps floats, x >= 0, eps > 0

Returns res such that x-eps <= res*res <= x+eps """

case x eps

边界测试 0 0.0001

平⽅数测试 25 0.0001

⼩于1时测试 0.05 0.0001

⽆理数平⽅根 2 0.0001

极限值 2 1.0/2.0**64.0

极限值 1.0/2.0**64.0 1.0/2.0**64.0

极限值 2.0**64.0 1.0/2.0**64.0

Testing and Debugging

n 测试的方法：
• 白盒测试：代码逻辑全覆盖

Ø 核心思想：基于代码结构设计测试用例，覆盖分支、循环、条件

Ø 适用场景：单元测试、代码重构等
def is_even(num):

if num % 2 == 0:

return True

else:

 return False

def test_is_even():

 assert is_even(4) is True # 分⽀1

 assert is_even(3) is False # 分⽀2

每一个潜在路径都至少被测试了1次

path-complete

缺点：产生大量测试用例、漏掉关键路径

Testing and Debugging

n 测试的方法：
• 白盒测试：代码逻辑全覆盖
def abs(x):

""" Assumes x is an int
Returns x if x>=0 and –x otherwise """
if x < -1:

return –x
else:

return x
完整路径测试：x=2 和 x=-2

但是-1代入后返回-1

仍然需要测试边界条件

Testing and Debugging

n 调试（debugging）：
• 一旦你发现了代码不能正常运行，你希望：

Ø 找到bug的位置

Ø 根除掉bug

Ø 重写测试代码直到能正确运行所有用例

• 最耗时的环节

• 利用工具提高效率

• 使用IDLE中自带的调试功能

• 使用Python自带的调试包（pdb）

• 善用print函数

Testing and Debugging

n 调试（debugging）：
• 发现代码错误的难度不同

Ø 通过报错信息就能定位到的错误：

访问超过限制的列表：

test = [1,2,3] 然后 test[4] à IndexError

转换不合适的数据类型：

int(test) à TypeError

Python语法错误：

a = len([1,2,3] à SyntaxError

Testing and Debugging

n 调试（debugging）：
• 发现代码错误的难度不同

Ø 逻辑错误——难以定位

• 在写新的代码前就充分想清楚

• 可以通过画逻辑图、流程图提高对代码的认识

• 向别人解释你代码的逻辑

Testing and Debugging

n 调试（debugging）：
• 调试代码的步骤：

• 先理解你的代码

• 然后时刻想着为什么你的代码出现了不满足预期的结果

• 根据你的代码形成假设，应该产生什么结果

• 充分运行你的代码确认大致出错位置：模块、函数

• 使用最简单的例子测试出错位置

• 一步步缩小测试范围，直到定位到语句

Testing and Debugging

n 调试（debugging）：
• 用print语句：

• 在哪里使用print？——模块的开始与结束

把进入函数时的参数值打印出来看看

在循环之后把处理过的变量打印出来看看

把跳出函数后的返回值打印出来看看

• 高效使用print定位bug——二分查找法

把print放在一段代码中间的位置

根据打印的值确定bug的可能位置

Testing and Debugging

n 调试（debugging）：
• 用pdb调试代码的优势：

• 无需IDE：直接通过命令行调试，适用于服务器/无图形界面环境

• 灵活嵌入：通过代码插入断点，精准控制调试位置

import pdb

your code

pdb.set_trace()

• 动态观察：运行时查看变量、修改状态、逐行跟踪逻辑

• 学习代码：深入理解程序执行流程，适合调试复杂逻辑（如递归、循环）

Testing and Debugging

n 调试（debugging）：
• pdb调试的用法：

在需要检查的代码位置插入断点：

import pdb

def calculate(a, b):

 pdb.set_trace() # 插⼊断点

 result = a * b

 return result + 10

print(calculate(3, 5))

> example.py

(Pdb) p a, b # 输出：3, 5

(Pdb) n # 执⾏下⼀⾏

(Pdb) p result # 输出：15

Testing and Debugging

n 调试（debugging）：
• pdb调试的用法：

l (list) # 查看当前代码

n (next) # 执行下一行

s (step) # 进入函数内部

c (continue) # 继续运行到下一个断点

p var # 打印变量值

q (quit) # 退出调试

Exceptions

n 异常（Exceptions）
• 当程序执行到不符合预期的条件会抛出异常

• 例如：
Ø 访问超出列表范围的元素： IndexError

test = [1,7,4]

test[4]

Ø 对不合适的类型进行转换，或数据类型混用：TypeError

int(test)

'a'/4

Ø 使用一个不存在的变量：NameError

a

Exceptions

n 处理异常（Exceptions）
• 遇到异常时，程序会抛出错误，执行会被停止

• Python代码可以手动处理异常：
try:
 # do some potentially
 # problematic code
except:
 # do something to
 # handle the problem

Ø 如果try内的代码都能成功执行，继续执行except后面的代码

Ø 如果try内的代码会抛出异常，会执行except内的代码，然后继续执行之后的代码

Exceptions

n 处理异常（Exceptions）
• 例子：将一个字符串中所有数字加起来

def sum_digits(s):
 """ s is a non-empty string
 containing digits.
 Returns sum of all chars that
 are digits """
 total = 0
 for char in s:
 if char in '0123456789‘:
 val = int(char)
 total += val
 return total

如果字符串中有非数字字符会抛出异常

def sum_digits(s):
 """ s is a non-empty string
 containing digits.
 Returns sum of all chars that
 are digits """
 total = 0
 for char in s:
 try:
 val = int(char)
 total += val
 except:
 print("can't convert", char)
 return total

Exceptions

n 处理异常（Exceptions）
• 用户输入可能引发异常
a = int(input("Tell me one number:"))
b = int(input("Tell me another number:"))
print(a/b)

用户可能输入字符
用户可能输入b=0

在可能存在异常的代码周围使用try/except
try:
 a = int(input("Tell me one number:"))
 b = int(input("Tell me another number:"))
 print(a/b)
except:
 print("Bug in user input.")

Exceptions

n 处理特定类型的异常
• 我们可以根据不同类型的异常编写不同的处理逻辑
try:
 a = int(input("Tell me one number: "))
 b = int(input("Tell me another number: "))
 print("a/b = ", a/b)
 print("a+b = ", a+b)
except ValueError:
 print("Could not convert to a number.")
except ZeroDivisionError:
 print("Can't divide by zero")
 print("a/b = infinity")
 print("a+b =", a+b)
except:
 print("Something went very wrong.")

只有在特定异常出现时处理

在其他异常出现时处理

Exceptions

n 跟异常处理同时使用的语句
• 当try中代码执行完成且没有异常出现时：

• else

• 在try、except、else之后总是需要执行的代码，即使在代码中执行了

break、continue、return也要执行

• finally

• 可用于清除代码信息，如关闭文件

• 需要知道这些用法，但不常用

Exceptions

n 遇到异常时如何处理？
• 需求一：安静地处理错误

• 去掉默认的抛出异常的方式，让程序继续执行

• 不建议，用户无法获得异常信息

• 需求二：返回一个错误的值

• 问题：用什么值代替错误信息？

• 不建议，处理起来较复杂，提高代码复杂度

• 需求三：停止执行，给出详细的错误信号
• raise ValueError("something is wrong")

手动抛异常关键字 异常类型 异常信息

Exceptions

n 遇到异常时如何处理？
• 例子：当遇到异常时，处理异常信息并手动抛出
def sum_digits(s):
 """ s is a non-empty string containing digits.

Returns sum of all chars that are digits """
 total = 0
 for char in s:
 try:
 val = int(char)
 total += val
 except:

raise ValueError("string contained a character")
 return total

如果遇到非数字就停止执行，并抛出自定义信息的异常

Exceptions

n 遇到异常时如何处理？
• 例子：当遇到异常时，处理异常信息并手动抛出
def sum_digits(s):
 """ s is a non-empty string containing digits.

Returns sum of all chars that are digits """
 total = 0
 for char in s:
 try:
 val = int(char)
 total += val
 except:

raise ValueError("string contained a character")
 return total

如果遇到非数字就停止执行，并抛出自定义信息的异常

Exceptions

n 课后练习
def pairwise_div(Lnum, Ldenom):
 """ Lnum 和 Ldenom 是⾮空 lists，包含了相同⻓度的数字
 Returns ⼀个新的 list 它的每⼀个元素是 Lnum 和 Ldenom 每⼀个元素成对相除的结果
 抛出⼀个 ValueError 如果 Ldenom 包含了 0 元素 """
 # 你的代码

例⼦：
L1 = [4,5,6]
L2 = [1,2,3]
print(pairwise_div(L1, L2)) # prints [4.0,2.5,2.0]
L1 = [4,5,6]
L2 = [1,0,3]
print(pairwise_div(L1, L2)) # raises a ValueError

Asser tions

n 断言（Assertions）——一种防御式编程工具
• 确保对于代码计算状态的假设是符合预期的

• 使用assert语句，当假设不被满足时，可以抛出一个AssertionError

assert <statement that should be true>, "message if not true"

• 一个好的防御式编程效果：
Ø 不赋予程序员对意外情况的响应控制权

Ø 当预期条件未满足时强制终止程序执行

Ø 可用于函数输入参数检查，适用于代码任何需要验证的位置

Ø 可验证函数输出结果，防止错误值传播

Ø 通过快速失败（fail-fast）机制有效缩小错误定位范围

Assertions

n 断言（Assertions）——一种防御式编程工具
• 断言的使用例子：从一个非空字符串中把数字加起来

def sum_digits(s):
 """ s is a non-empty string containing digits.
 Returns sum of all chars that are digits """
 assert len(s) != 0, "s is empty"
 total = 0
 for char in s:
 try:
 val = int(char)
 total += val
 except:
 raise ValueError("string contained a character")

当条件不满足时就停止执行，同时输出错误信息

Asser tions

n 断言（Assertions）——一种防御式编程工具
• 断言的使用例子：从两个非空的列表中逐个元素相除

def pairwise_div(Lnum, Ldenom):
 """ Lnum and Ldenom are non-empty lists of equal lengths containing numbers
 Returns a new list whose elements are the pairwise division of Lnum and Ldenom.
 Raise a ValueError if Ldenom contains 0. """

防御性编程断⾔（符合函数要求）
assert len(Lnum) == len(Ldenom) and len(Lnum) > 0, “输⼊列表必须⾮空且⻓度相等”

核⼼逻辑
result = []
for numerator, denominator in zip(Lnum, Ldenom):
 if denominator == 0:
 raise ValueError("分⺟不能为0")
 result.append(numerator / denominator)
return result

Asser tions

n 断言（Assertions）——一种防御式编程工具
• 断言的使用例子：学生成绩计算

• 我们有一门课的成绩list，每个元素是一个学生的成绩，包括姓、名和成

绩列表：
test_grades = [[['peter', 'parker'], [80.0, 70.0, 85.0]],

 [['bruce', 'wayne'], [100.0, 80.0, 74.0]]]

• 创建的一个新的list，将每个学生的平均成绩加在最后：
[[['peter', 'parker'], [80.0, 70.0, 85.0], 78.33333],

 [['bruce', 'wayne'], [100.0, 80.0, 74.0], 84.666667]]]

Asser tions

n 断言（Assertions）——一种防御式编程工具
• 断言的使用例子：学生成绩计算

• 一个实现的方式：
def get_stats(class_list):
 new_stats = []
 for stu in class_list:
 new_stats.append([stu[0], stu[1], avg(stu[1])])
 return new_stats

def avg(grades):
 return sum(grades)/len(grades)

Asser tions

n 断言（Assertions）——一种防御式编程工具
• 断言的使用例子：学生成绩计算

• 如果某个学生没有成绩，计算avg时会出错：

test_grades = [[['peter', 'parker'], [10.0,55.0,85.0]],

 [['bruce','wayne'], [10.0,80.0,75.0]],

 [['captain','america'], [80.0,10.0,96.0]],

 [['deadpool'], []]]

ZeroDivisionError: float division by zero

Asser tions

n 断言（Assertions）——一种防御式编程工具
• 断言的使用例子：学生成绩计算

• 更好的处理错误的方式：打印出错误原因
def avg(grades):
 try:
 return sum(grades)/len(grades)
 except ZeroDivisionError:
 print('warning: no grades data')

warning: no grades data
[[['peter', 'parker'], [10.0, 55.0, 85.0], 50.0],
[['bruce', 'wayne'], [10.0, 80.0, 75.0], 55.0],
[['captain', 'america'], [80.0, 10.0, 96.0], 62.0],
[['deadpool'], [], None]]

Asser tions

n 断言（Assertions）——一种防御式编程工具
• 断言的使用例子：学生成绩计算

• 更好的处理错误的方式：修改异常处理的逻辑（没成绩0分）
def avg(grades):
 try:
 return sum(grades)/len(grades)
 except ZeroDivisionError:
 print('warning: no grades data')

 return 0.0

warning: no grades data
[[['peter', 'parker'], [10.0, 55.0, 85.0], 50.0],
[['bruce', 'wayne'], [10.0, 80.0, 75.0], 55.0],
[['captain', 'america'], [80.0, 10.0, 96.0], 62.0],
[['deadpool'], [], 0.0]]

Asser tions

n 断言（Assertions）——一种防御式编程工具
• 断言的使用例子：学生成绩计算

• 更好的处理错误的方式：设置断言，没有满足就停止执行

def avg(grades):

 assert len(grades) != 0, 'no grades data'

 return sum(grades)/len(grades)

如果有空list，就抛出AssertionError，打印出错误信息，停止执行

Asser tions

n 断言（Assertions）与异常（Exceptions）的对比
• 目标都是在bug出现的时候立刻发现它并指出其位置

• 异常提供了一种处理不满足预期输入的方法：

Ø 在不需要停止代码执行时使用

Ø 如果用户提供了不满足要求的输入就抛出异常

• 使用断言的场景：

Ø 作为测试的补充功能

Ø 检查参数的类型是否满足

Ø 检查返回值的约束条件是否满足

Ø 检查执行过程中是否有违反约束的现象

Files

n 获取数据的方法
• 将数据直接放在程序里：变量赋值

• 让用户输入数据：输入框交互

• 随机化生成数据：random

• 从外部资源获取：存在文件中，后续读出来

Files

n 从文件中获取数据
• 文件是由一系列字节组成的

• 大量字节通过某种结构组成文件的格式：

Ø TXT：由大量字符组成

Ø JPEG：通过编码一副图片的结构信息形成

Ø MP3: 通过编码一段音乐的音频信息形成

Ø …

Files

n 如何用Python处理文件

Files

n 如何用Python处理文件

Files

n 如何用Python处理文件

Files

n 如何用Python处理文件

file = open('mydata.txt')

for line in file:

 print(line)

打开文件，获取文件的访问控制权

Files

n 如何用Python处理文件

file = open('mydata.txt')

for line in file:

 print(line)

每次从文件中读取一行内容

Files

n 如何用Python处理文件

file = open('mydata.txt')

for line in file:

 print(line) 输出到控制台该行内容

Files

n 如何用Python处理文件

file = open('mydata.txt')

for line in file:

 print(line) 直到把所有行处理完

Files

n 如何用Python处理文件
• 读取的每一行内容包含了换行符：
• line： 'perennial as the grass.\n'

file = open('mydata.txt')

for line in file:

 print(line)

Files

n 如何用Python处理文件
• 分析以下代码的效果

f = open('mydata.txt')

for line in f:

 print(line.strip())

 print('-----')

for line in f:

 print(line.strip())

Files

n 如何用Python处理文件
• 分析以下代码的效果

f = open('mydata.txt')

for line in f:

 print(line.strip())

 print('-----')

for line in f:

 print(line.strip())

文件对象在第一次for循环之后没有被重置

文件对象已经完全读取结束，指针已走完

不要读取同一个文件两次

Files

n 如何用Python处理文件
• 分析以下代码的效果

f = open('mydata.txt’)

next(f)

for line in f:

 print(line.strip())

Files

n 如何用Python处理文件
• 分析以下代码的效果

f = open('mydata.txt’)

next(f)

for line in f:

 print(line.strip())

next对文件操作时会跳过一行内容

同时返回这一行内容

Files

n 如何用Python处理文件
• 更好的文件处理写法

with open('mydata.txt') as f:

 for line in file:

 line = line.strip()

 print(line)

with 让 python 知道什么时候可以对文件进行关闭

Python的早期版本没有垃圾回收机制，文件会一直处于打开状态知道程序结束，浪费大量资源

Files

n Python处理csv文件——数据科学的日常

with open('dataset.csv') as f:

for line in file:

 line = line.strip()

 values = line.split(',’)

 print(values[1])

获取的一行内容：'Kenya,100,50\n'

with open('dataset.csv') as f:

for line in file:

 line = line.strip()

 values = line.split(',’)

 print(values[1])

Files

n Python处理csv文件——数据科学的日常

line的内容：'Kenya,100,50'

with open('dataset.csv') as f:

for line in file:

 line = line.strip()

 values = line.split(',’)

 print(values[1])

Files

n Python处理csv文件——数据科学的日常

values的内容：

with open('dataset.csv') as f:

for line in file:

 line = line.strip()

 values = line.split(',’)

 print(values[1])

Files

n Python处理csv文件——数据科学的日常

输出的内容：

Files

n Python处理csv文件——数据科学的日常

import csv

with open('dataset.csv') as f:

reader = csv.reader(f)

for values in reader:

print(values[1])

更方便的方式：csv 包

Files

n Python处理csv文件——数据科学的日常
• Python中，使用open()打开文件时，如果不指定mode，默认用只读模式

打开文件

import csv

with open('dataset.csv', 'r') as f:

reader = csv.reader(f)

for values in reader:

print(values[1])

如果文件不存在，抛出

FileNotFoundError

Files

n Python处理csv文件——数据科学的日常
• 读取csv文件再写入新的csv文件中

import csv

with open('dataset.csv', 'r') as f:

reader = csv.reader(f)

data = [row for row in reader]

with open('output.csv', 'w') as f:

writer = csv.writer(f)

writer.writerows(data)

Files

n 文件相关的其他用法
• Python中对于文件路径的处理

from pathlib import Path

file_path = Path.home() / "my_folder" / "my_file.txt"

print(file_path) # /path/to/your/home/my_folder/my_file.txt

Files

n 文件相关的其他用法
• Python中对于文件路径的处理

print(file_path.exists()) # False

print(file_path.name) # my_file.txt

print(file_path.parent.name) # my_folder

Files

n 文件相关的其他用法
• Python中对于文件路径的处理

from pathlib import Path

new_dir = Path.home() / "my_folder"

new_dir.mkdir()

Files

n 文件相关的其他用法
• Python中对于文件路径的处理

file1 = new_dir / "file1.txt"

file2 = new_dir / "file2.txt"

image1 = new_dir / "image1.png"

file1.touch() # create empty text file

file2.touch()

image1.touch() # create empty image file

Files

n 文件相关的其他用法
• Python中对于文件路径的处理

file1.unlink() # delete text file

import shutil

shutil.rmtree(new_dir) # remove the whole folder

Files

n 文件相关的其他用法
• Python中对于文件路径的处理

documents_dir = Path.cwd() / "practice_files" / "documents”

images_dir = Path.home() / "images”

for path in documents_dir.rglob("*.*"):

if path.suffix.lower() in [".png", ".jpg", ".gif"]:

path.replace(images_dir / path.name)

递归查找指定模式路径

将path路径下的图片移到image_dir下

Files

n 文件相关的其他用法
• Python读写特定路径文件

from pathlib import Path

starships = ["Discovery\n", "Enterprise\n", "Defiant\n",

"Voyager"]

file_path = Path.home() / "starships.txt"

with file_path.open(mode="w", encoding="utf-8") as file:

file.writelines(starships)

Files

n 文件相关的其他用法
• Python读写特定路径文件

with file_path.open(mode="r", encoding="utf-8") as file:

for starship in file.readlines():

print(starship, end="")

Discovery
Enterprise
Defiant
Voyager

Files

n 文件相关的其他用法
• Python读写特定路径文件

with file_path.open(mode="r", encoding="utf-8") as file:

for starship in file.readlines():

if starship.startswith("D"):

print(starship, end="")

Discovery
Defiant

Files

n 文件相关的其他用法
• Python读写CSV文件

import csv

from pathlib import Path

numbers = [
[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],

]
file_path = Path.home() / "numbers.csv"

Files

n 文件相关的其他用法
• Python读写CSV文件

with file_path.open(mode="w", encoding="utf-8") as file:

writer = csv.writer(file)

writer.writerows(numbers) # write each row into csv

Files

n 文件相关的其他用法
• Python读写CSV文件

numbers = []

with file_path.open(mode="r", encoding="utf-8") as file:

reader = csv.reader(file)

for row in reader:

int_row = [int(num) for num in row]

numbers.append(int_row)

print(numbers) # same as numbers before

Files

n 文件相关的其他用法
• Python读写CSV文件

favorite_colors = [

{"name": "Joe", "favorite_color": "blue"},

{"name": "Anne", "favorite_color": "green"},

{"name": "Bailey", "favorite_color": "red"},

]

file_path = Path.home() / "favorite_colors.csv"

把字典写入csv

Files

n 文件相关的其他用法
• Python读写CSV文件

with file_path.open(mode="w", encoding="utf-8") as file:

writer = csv.DictWriter(

file, fieldnames=["name", "favorite_color"])

writer.writeheader() # write keys into csv first line

writer.writerows(favorite_colors) # values as rows

Files

n 文件相关的其他用法
• Python读写CSV文件

favorite_colors = []

with file_path.open(mode="r", encoding="utf-8") as file:

reader = csv.DictReader(file)

for row in reader:

favorite_colors.append(row)

print(favorite_colors) # each dictionary as an item in list

Reading and QA Time

See you next week !

