
Python程序设计与实践

专业高级技术拓展

第七课：字典、递归

2025.4

Today

n 字典的定义与用法

n 字典的主要方法

n 字典应用实战

n 递归的意义与场景

n 递归的编写与使用

Dictionary

n 什么是字典：
• 假如我们想存储和使用一组学生的成绩信息，使用之前学到的应该怎么做？

• 可以使用两个list，分别存放学生姓名和成绩

names = ['Ana', 'John', 'Matt', 'Katy']

grades = ['A+' , 'B' , 'A' , 'A’]

• 可以通过索引位置，间接地访问某个学生及其成绩

Dictionary

n 什么是字典：
• 可以用嵌套list：

eric = ['eric', ['ps', [8, 4, 5]], ['mq', [6, 7]]]
ana = ['ana', ['ps', [10, 10, 10]], ['mq', [9, 10]]]
john = ['john', ['ps', [7, 6, 5]], ['mq', [8, 5]]]
grades = [eric, ana, john]

def get_grades(who, what, data):
 for stud in data:
 if stud[0] == who:
 for info in stud[1:]:
 if info[0] == what:
 return who, info

代码过于复杂

Dictionary

n 什么是字典：
• 更好的数据结构：

• 使用一个数据对象，不用分成多个list

• 可以通过自定义的方式索引并获取其中的数据

list 字典

Dictionary

n 什么是字典：
• 字典是由键（key）-值（value）对构成的数据结构

• Key：唯一的标识符

• Value：由key绑定的数据

• 现实中事物的类比

• 电话薄：姓名（keys）+电话号码（values）

• 英文字典：首字母（keys）+单词定义（values）

• 居民身份系统：身份证号（keys）+居民个人信息（values）

Dictionary

n Python中的字典：
• 字典数据类型（Dict）

• 由大括号表示 { … }

• key和value之间由冒号分隔

• 每一对key/value由逗号分隔

ages = {'Chris': 32, 'Juliette': 22, 'Mehran': 50}

squares = {2: 4, 3: 9, 4: 16, 5: 25}

phone = {'Pat': '555-1212', 'Jenny': '867-5309'}

empty_dict = {}

Dictionary

n Python中的字典：
• 字典数据类型（Dict）

ages = {'Chris': 32, 'Juliette': 22, 'Mehran': 50}

• 类似于一系列由key索引形成的变量

• 可以通过key获取被索引的value：

• ages['Chris’] à 32

• ages['Mehran’] à 50

Dictionary

n Python中的字典：
• 字典数据类型（Dict）

ages = {'Chris': 32, 'Juliette': 22, 'Mehran': 50}

• 类似于一系列由key索引形成的变量

• 可以将value当作一般的变量来使用：

• ages['Mehran'] = 18

• ages['Mehran'] += 3

Dictionary

n Python中的字典：
• 字典数据类型（Dict）

ages = {'Chris': 32, 'Juliette': 22, 'Mehran': 50}

• 类似于一系列由key索引形成的变量

• 通过key获取value要注意key是否存在：
>>> juliettes_age = ages['Juliette']
>>> juliettes_age
22
>>> santas_age = ages['Santa Claus']
KeyError: 'Santa Claus'

Dictionary

n Python中的字典：
• 字典数据类型（Dict）

ages = {'Chris': 32, 'Juliette': 22, 'Mehran': 50}

• 类似于一系列由key索引形成的变量

• 可以通过key查看某条记录是否存在：
>>> 'Juliette' in ages
True
>>> 'Santa Claus' not in ages
True

Dictionary

n Python中的字典：
• 字典数据类型（Dict）

• 向字典中添加记录：

phone = {}

phone['Pat'] = '555-1212'

phone['Jenny'] = '867-5309'

Dictionary

n Python字典key/value注意事项：
• key一定是不可变类型（immutable）

• 可以是int、float、string、tuple，不能是list

• 如果需要修改key，要先删除key/value记录，再用新的key添加记录

• value可以是可变（mutable）或不可变类型（immutable）

• 可以是int、float、string、list、dictionary

• value可以在原位置被修改

• 字典本身是可变类型（mutable）

• 可以在一个字典数据中任意添加、修改、删除记录

Dictionary

n 修改Python字典
def have_birthday(dict, name):
 print("You're one year older, " + name + "!")
 dict[name] += 1

def main():
 ages = {'Chris': 32, 'Juliette': 22, 'Mehran': 50}
 print(ages)
 have_birthday(ages, 'Chris‘)
 print(ages)
 have_birthday(ages, 'Mehran‘)
 print(ages)

Dictionary

n Python字典的其他用法
• 安全地获取key对应的value

• dict.get(key, default)

• 返回key对应的值，如果key不存在，返回default

>>> print(ages.get('Chris', 100))

32

>>> print(ages.get('Santa Claus', 100))

100

Dictionary

n Python字典的其他用法
• 获取字典中的所有key：

• dict.keys()

• 返回一个迭代器，可以用于遍历获取每一个key

for key in ages.keys():

 print(str(key) + " -> " + str(ages[key]))

• 可以将所有key转换为一个list：

list(ages.keys()) à ['Chris', 'Juliette', 'Mehran']

Dictionary

n Python字典的其他用法
• 遍历一个字典

• 可以在一个字典上使用for循环，遍历字典的每一个key

for key in ages:

 print(str(key) + " -> " + str(ages[key]))

Dictionary

n Python字典的其他用法
• 遍历一个字典

• 可以在一个字典上使用for循环，遍历字典的每一个value

for value in ages.values():

 print(value)

• 可以将values函数的输出转换为list：

list(ages.values()) à [32, 22, 50]

Dictionary

n Python字典的其他用法
• 遍历一个字典

• 可以在一个字典上使用for循环，遍历字典的每一个key/value对

for key, value in ages.items():

 print(str(key) + " -> " + str(value))

>>> Chris -> 32

Juliette -> 22

Mehran -> 50

Dictionary

n Python字典的其他用法
• 从字典中删除记录

• dict.pop(key)：从字典中删除key和它绑定的value，返回value
>>> ages
>>> {'Chris': 32, 'Juliette': 22, 'Mehran': 50}
>>> ages.pop('Mehran')
50
>>> ages
{'Chris': 32, 'Juliette': 22}

• dict.clear()：删除所有字典中的key/value记录

ages.clear() à {}

Dictionary

n Python字典的其他用法
• 从字典中删除记录

• del dict[key]：从字典中删除key和它绑定的value，没有返回值

>>> ages

{'Chris': 32, 'Juliette': 22, 'Mehran': 50}

>>> del ages['Mehran']

>>> ages

{'Chris': 32, 'Juliette': 22}

• len(dict)：返回字典中key/value对的个数

Dictionary

n Python字典的可变性
• 字典是可变数据类型（遵守别名和克隆原则）

• 可以使用赋值操作创建别名

• 可以使用 dict.copy() 创建克隆

• values可以是任意类型，可以被复制

• keys必须是唯一的，必须是不可变类型，要当心使用float作为key时的情况

Dictionary

n Python字典的可变性
• 为什么字典的key一定是不可变的？

• 跟字典在内存中特殊的存储方式有关

• 存储字典时，对于每一个key，先通过一个函数转换为一个整数

• 每一个整数对应着一块内存地址的位置

• 将key绑定的value存储到对应的地址上

• 查询字典时，如果key时不可变的，可以始终获取到同一个地址

• 如果key可变，获取到的地址会发生变化，value发生变化

Dictionary

n Python字典的可变性
• 将key转换为地址的函数，叫做哈希函数（hash function）

• 假设一个哈希函数为：将key中每一个字母的序号相加再取除以16的余数

Dictionary

n Python字典的可变性
• 如果这时，将key为Kate的名字改为了Cate，查询她成绩时会发生什么？

Dictionary

n Python字典的可变性
• 字典的value可以是可变或不可变类型，如dictionary、list

• 例子：学生多门课的多个成绩

grades = {'Ana':{'mq':[5,4,4], 'ps': [10,9,9], 'fin': 'B'},

 'Bob':{'mq':[6,7,8], 'ps': [8,9,10], 'fin': 'A'}}

字典的整体类型：str: dict

字典每个value的类型：
str: list
str: str

Dictionary

n Python字典与列表的对比

list dictionary

• 由排好序的元素组成的序列

• 通过整数索引查询元素

• 索引也是按顺序的

• 元素的值可以是任意类型

• 由配对好的key和value组成

• 通过key查询value的值

• 字典的key和记录没有固定顺序

• key可以是任意不可变类型

• value可以是任意类型

Dictionary

n Python字典应用示例：从一首歌词中找出出现次数最多的单词
• 创建一个频次字典，类型为 str: int

• 找到出现频次最多的单词，并给出次数：

• 使用一个list记录次数对应的单词（可能多个单词出现一样多次）

• 返回一个元组(list, int)用于表示(单词列表，最多次数)

• 找到出现至少X次的单词

• 作为一个参数，让用户选择 X

• 返回一个元组构成的list，每个元组为(list, int)，表示单词列表和对

应的出现次数

Dictionary

n Python字典应用示例：从一首歌词中找出出现次数最多的单词
song = "RAH RAH AH AH AH ROM MAH RO MAH MAH"
def generate_word_dict(song):
 song_words = song.lower()
 words_list = song_words.split()
 word_dict = {}
 for w in words_list:
 if w in word_dict:
 word_dict[w] += 1
 else:
 word_dict[w] = 1
 return word_dict

将歌词统一转换为小写，便于统计

将歌词转换为单词列表，默认空格分割
遍历歌词中的每个单词

如果单词已经出现在统计结果中，更新次数+1

如果单词还没出现在统计结果中，添加记录

返回 str:int 类型的字典

Dictionary

n Python字典应用示例：从一首歌词中找出出现次数最多的单词
 word_dict = {'rah':2, 'ah':3, 'rom':1, 'mah':3, 'ro':1}

def find_frequent_word(word_dict):
 words = []
 highest = max(word_dict.values())
 for k,v in word_dict.items():
 if v == highest:
 words.append(k)
 return (words, highest)

找到最大次数的值

遍历字典找出最大次数对应的单词

找出所有最大次数的单词，追加到list中

返回元组：([word1, word2,…], frequency)

Dictionary

n Python字典应用示例：从一首歌词中找出出现次数最多的单词
 word_dict = {'rah':2, 'ah':3, 'rom':1, 'mah':3, 'ro':1}

def occurs_often(word_dict, x):
freq_list = []
word_freq_tuple = find_frequent_word(word_dict)
while word_freq_tuple[1] > x:

word_freq_tuple = find_frequent_word(word_dict)
freq_list.append(word_freq_tuple)
for word in word_freq_tuple[0]:

del(word_dict[word])
return freq_list

初始化一个单词元组

只要频次还大于x就继续遍历

将大于x次数的单词存入结果中

修改字典，移除当前频次的单词记录，继续遍历，找出现第二多次数的单词

Dictionary

n Python字典应用示例：从一首歌词中找出出现次数最多的单词
• 该例子的一些注意事项：

1. 将长字符串转换为单词列表可以让我们使用列表方法处理数据

words_list = song_words.split()

2. 可以利用列表天然的结构进行单词遍历

 for w in words_list:

3. 可以利用字典天然的结构进行单词和频次的遍历与处理

 for k,v in word_dict.items():

4. 字典的可变性可以让我们迭代式地处理字典记录

 del(word_dict[word])

Recap

n 字典相关知识回顾：
• 核心概念

• key/value对结构：{key: value}

• key：唯一、不可变类型（字符串、整数等）

• value：任意数据类型（包括列表、字典）

• 基础操作
• 创建：grades = {'Ana': 'A', 'Bob': 'B'}

• 访问：grades['Ana']

• 添加/修改：grades['Chris'] = 'A+'

• 删除：del grades['Bob']

Recap

n 字典相关知识回顾：
• 常用方法

• keys(), values(), items()

• get(key, default)：安全访问key/value

• pop(key)：删除并返回value

Examples

n 字典练习1：学生成绩管理系统
• 场景需求

• 存储学生姓名、各科成绩、小测验分数

• 支持添加、查询、更新、删除操作

• 代码实现

初始化嵌套字典
students = {
 'Ana': {'math': 90, 'physics': 85, 'quizzes': [8, 9, 7]},
 'Bob': {'math': 78, 'physics': 92, 'quizzes': [6, 8, 7]}
}

Examples

n 字典实战练习1：学生成绩管理系统
• 代码实现

添加学⽣
students['Chris'] = {'math': 88, 'physics': 90, 'quizzes': [9, 9]}

查询物理成绩
print(students['Ana'].get('physics', '未录⼊'))

更新数学成绩
students['Bob']['math'] = 85

删除学⽣
del students['Chris']

Examples

n 字典练习2：词频统计工具
• 场景需求

• 统计文本文件中每个单词的出现次数

• 输出最高频单词及其频率

• 代码实现

def word_frequency(file_path):

 # 你的代码

示例调用

print(word_frequency('poem.txt'))

Examples

n 字典练习2：词频统计工具
• 代码实现
def word_frequency(file_path):

word_count = {}
with open(file_path, 'r') as file:

for line in file:
words = line.strip().lower().split()
for word in words:

word_count[word] = word_count.get(word, 0) + 1
max_freq = max(word_count.values())
common_words = [k for k, v in word_count.items() if v == max_freq]
return common_words, max_freq

Examples

n 字典练习3：电话簿应用
• 场景需求

• 实现添加、查找、删除联系人功能

• 支持输入错误处理（如重复添加）

• 代码实现
phonebook = {}

def add_contact(name, number):

def find_contact(name):

def delete_contact(name):

Examples

n 字典练习2：词频统计工具
• 代码实现
def add_contact(name, number):

if name in phonebook:
print(f"{name} 已存在！")

else:
phonebook[name] = number

def find_contact(name):
return phonebook.get(name, "未找到联系人")

def delete_contact(name):
if name in phonebook:

phonebook.pop(name)
else:

print(f"{name} 不存在！")

示例调⽤

add_contact('Alice', '123-4567')

print(find_contact('Alice'))

delete_contact('Bob') # 错误处理

Examples

n 字典练习4：数据聚合与统计
• 场景需求

• 计算每个学生的总分和平均分

• 按科目统计全班平均分

• 代码实现
students = {

'Ana': {'math': 90, 'physics': 85},

'Bob': {'math': 78, 'physics': 92}

}

Examples

n 字典练习4：数据聚合与统计
• 代码实现
学生总分与平均分
for name, scores in students.items():

total = sum(scores.values())
avg = total / len(scores)
print(f"{name}: 总分={total}, 平均分={avg:.1f}")

科目平均分
math_scores = [s['math'] for s in students.values()]
physics_avg = sum(s['physics'] for s in students.values()) / len(students)
print(f"数学平均分: {sum(math_scores)/len(math_scores):.1f}")

Examples

n 字典练习5：学生成绩分析系统（拓展）
• 场景需求

• 存储学生各科成绩，计算每个学生的总分、平均分

• 统计各科目全班的平均分

• 处理学生或科目不存在的情况

• 代码实现
students = {

'Ana': {'math': 90, 'physics': 85, 'chemistry': 78},

'Bob': {'math': 78, 'physics': 92, 'chemistry': 88}

}

Examples

n 字典练习5：学生成绩分析系统（拓展）
• 代码实现
def calculate_student_stats():

for name, scores in students.items():
try:

total = sum(scores.values())
avg = total / len(scores)
print(f"{name}: 总分={total}, 平均分={avg:.1f}")

except ZeroDivisionError:
print(f"{name} 无成绩记录！")

Examples

n 字典练习5：学生成绩分析系统（拓展）
• 代码实现
def calculate_subject_avg(subject):

scores = []
for student in students.values():

try:
scores.append(student[subject])

except KeyError:
print(f"警告：{subject} 科目不存在于部分学生记录中")

if scores:
avg = sum(scores) / len(scores)
print(f"{subject} 平均分: {avg:.1f}")

else:
print(f"无有效 {subject} 成绩记录")

Examples

n 字典练习5：学生成绩分析系统（拓展）
• 代码实现

调用示例

calculate_student_stats()

calculate_subject_avg('math')

calculate_subject_avg('biology') # 触发异常处理

Examples

n 字典练习6：用户登录验证系统
• 场景需求

• 从JSON文件加载用户数据（用户名、密码）

• 验证用户登录，支持注册新用户

• 用户数据持久化到JSON文件

• 代码实现
import json
def load_users(file_path):
def save_users(users, file_path):
def login(users):
def register(users):

Examples

n 字典练习6：用户登录验证系统
• 代码实现
def load_users(file_path):

try:
with open(file_path, 'r') as file:

return json.load(file)
except FileNotFoundError:

return {}

def save_users(users, file_path):

with open(file_path, 'w') as file:

json.dump(users, file)

Examples

n 字典练习6：用户登录验证系统
• 代码实现

def login(users):

username = input("用户名: ")

password = input("密码: ")

if users.get(username) == password:

print("登录成功！")

else:

print("用户名或密码错误！")

Examples

n 字典练习6：用户登录验证系统
• 代码实现

def register(users):

username = input("新用户名: ")

if username in users:

print("用户名已存在！")

return

password = input("密码: ")

users[username] = password

print("注册成功！")

Examples

n 字典练习6：用户登录验证系统
• 代码实现
主程序
users_file = "users.json"
users = load_users(users_file)
action = input("登录(L) / 注册(R): ").upper()
if action == 'L':

login(users)
elif action == 'R':

register(users)
save_users(users, users_file)

else:
print("无效操作！")

Examples

n 字典练习7：商品库存管理系统
• 场景需求

• 管理商品ID、名称、价格、库存

• 支持添加商品、查询库存、更新库存

• 记录操作日志（时间、操作类型）

• 代码实现
import datetime
products = {

'P001': {'name': '键盘', 'price': 299, 'stock': 50},
'P002': {'name': '鼠标', 'price': 150, 'stock': 30}

}
logs = []

Examples

n 字典练习7：商品库存管理系统
• 代码实现

def add_product(product_id, name, price, stock):
if product_id in products:

print("商品ID已存在！")
return

products[product_id] = {
 'name': name, 'price': price, 'stock': stock}

logs.append(
 (datetime.datetime.now(), f"添加商品 {product_id}"))

Examples

n 字典练习7：商品库存管理系统
• 代码实现

def update_stock(product_id, quantity):
try:

products[product_id]['stock'] += quantity
logs.append(

 (datetime.datetime.now(), f"更新库存 {product_id}"))
except KeyError:

print("商品不存在！")

Examples

n 字典练习7：商品库存管理系统
• 代码实现

def show_logs():
for log in logs:

print(f"[{log[0]}] {log[1]}")

示例调用
add_product('P003', '耳机', 199, 20)
update_stock('P001', -10) # 卖出10个键盘
show_logs()

Examples

n 字典练习8：电影推荐系统
• 场景需求

• 从JSON文件读取用户电影评分数据

• 根据当前用户喜好推荐相似用户的高评分电影

• 处理文件格式错误

• 代码实现
import json

def load_ratings(file_path):

def recommend_movies(user_ratings, all_ratings):

Examples

n 字典练习8：电影推荐系统
• 代码实现

def load_ratings(file_path):
try:

with open(file_path, 'r') as file:
return json.load(file) # 字典（用户：评分）

except json.JSONDecodeError:
print("文件格式错误！")
return {}

except FileNotFoundError:
print("文件不存在！")
return {}

Examples

n 字典练习8：电影推荐系统
• 代码实现

def recommend_movies(user_ratings, all_ratings):
similar_users = []
for user, ratings in all_ratings.items():

similarity = sum([
1 for movie in user_ratings
if movie in ratings and ratings[movie] >= 4])

if similarity >= 2:
similar_users.append(user)

Examples

n 字典练习8：电影推荐系统
• 代码实现

def recommend_movies(user_ratings, all_ratings):
 ……

recommendations = {}
for user in similar_users:

for movie, score in all_ratings[user].items():
if score >= 4 and movie not in user_ratings:

recommendations[movie] = recommendations.get(movie, 0) + 1
return sorted(recommendations.items(), key=lambda x: -x[1])

Examples

n 字典练习8：电影推荐系统
• 代码实现

示例数据

ratings = load_ratings("ratings.json")

current_user = {'MovieA': 5, 'MovieB': 4}

print("推荐电影:", recommend_movies(current_user, ratings))

Recursion

n 什么是递归？

• 递归是一种通过函数调用自身的方式解决问题的方法

• 用来将一个复杂问题分解为结构相似但规模更小的问题

• 核心包括：

• 基本情况（base case）：直接返回结果的终止条件

• 递归步骤（recursive step）：把问题转换为更小的同类问题

• 递归的意义：递归让代码更简洁，逻辑更贴近人类对问题的思考方式，特别

适合处理具有层级结构或重复子结构的问题

Recursion

n 递归的应用场景

Ø 数学运算：阶乘、幂、斐波那契数列等

Ø 数据结构遍历：树、图、链表等

Ø 分治算法：快速排序、归并排序等

Ø 实际问题：如文件夹遍历、图像处理、AI搜索等

• 递归在这些场景中，能帮助我们简洁地描述问题的结构

Recursion

n 迭代式地进行乘法计算

def mult_iter(a, b):

result = 0

while b > 0:

result += a

b -= 1

return result

• 通过循环不断累加a，共循环b次，最终得到结果

• 是一种逐步推进的“状态更新”方法

Recursion

n 递归式地进行乘法计算

• 想象我们要计算 5 × 4：

• 5 + 5 + 5 + 5

• 也可以看作：5 + (5 × 3)

• 继续分解：5 + (5 + (5 × 2)) à 直至最后：5 + 5 + 5 + 5

• 递归思想：通过问题的重复结构，自然过渡到递归方式

Recursion

n 递归乘法代码

def mult_recur(a, b):

if b == 1:

return a

else:

return a + mult_recur(a, b-1)

递归过程解释：

• 当 b = 1，返回 a（基本情况）

• 否则返回 a + mult_recur(a, b-1)

Recursion

n 递归乘法的执行过程

mult_recur(5, 4)

= 5 + mult_recur(5, 3)

= 5 + (5 + mult_recur(5, 2))

= 5 + (5 + (5 + mult_recur(5, 1)))

= 5 + 5 + 5 + 5 = 20

Recursion

n 递归乘法的执行过程

调用栈展开：

mult_recur(5,4)

→ mult_recur(5,3)

→ mult_recur(5,2)

→ mult_recur(5,1) → return 5

返回过程：

5 + 5 → 10

10 + 5 → 15

15 + 5 → 20

每次调用都有独立的变量空间

返回值向上传递

Recursion

n 递归调用的通用写法

def recursive_fn(...):

if base_case:

return result

else:

return recursive_fn(smaller_problem)

理解要点：

• 找到终止条件

• 将问题缩小，逐步接近终止条件

过程：问题规模逐步减小 → 到达终止点 → 回溯返回

Recursion

n 递归计算幂

def power_recur(n, p):

if p == 0:

return 1

else:

return n * power_recur(n, p-

1)

示例：power(2, 3) → 2 * power(2, 2) →

2 * 2 * power(2,1)...

• 每次递归把指数p减小，直到为0

power(2,3)

→ 2 * power(2,2)

→ 2 * 2 * power(2,1)

→ 2 * 2 * 2 * power(2,0) = 1

→ 回溯结果 = 8

Recursion

n 递归计算阶乘

n! = n × (n-1) × (n-2) × ... × 1

def fact(n):

if n == 1:

return 1

else:

return n * fact(n-1)

示例：fact(4) = 4 × 3 × 2 × 1 = 24

fact(4)

→ 4 * fact(3)

→ 4 * 3 * fact(2)

→ 4 * 3 * 2 * fact(1) = 1

→ 回溯：1 → 2 → 6 → 24

Recursion

n 递归的调用机制

• 每个函数调用都在内存中创建新的执行环境（栈帧）

• 当调用层层深入 → 形成函数调用栈

• 当遇到基本情况 → 回溯逐层返回值

• 函数嵌套像俄罗斯套娃，最里面先返回

Recursion

n 递归与迭代对比

递归 迭代
编写简洁 ✅ ❌

可读性强 ✅ ✅

内存占用 ❌（栈帧多） ✅

性能 较慢 较快
容易调试 ❌ ✅

建议：如能轻松使用迭代，优先考虑性能更佳的迭代方式

Recursion

n 何时使用递归？

• 适合递归的场景：

• 问题本身具有递归结构

• 使用迭代写法复杂、冗长

• 不适合递归的场景：

• 输入规模非常大（风险：栈溢出）

• 能用循环更直接地解决

Recursion

n 递归练习：斐波那契数列

• 斐波那契定义：F(n) = F(n-1) + F(n-2)，F(0)=0, F(1)=1

def fib(n):

if n <= 1:

return n

else:

return fib(n-1) + fib(n-2)

• 问题：fib(4) → fib(3)+fib(2) → 分支爆炸

• 此版本存在大量重复计算，效率低（如 fib(2)计算多次）

Recursion

n 递归练习：斐波那契数列

• 优化版递归：记忆化斐波那契
memo = {}
def fib_mem(n):

if n in memo:
return memo[n]

if n <= 1:
memo[n] = n

else:
memo[n] = fib_mem(n-1) + fib_mem(n-2)

return memo[n]

• 使用字典缓存已有结果，避免重复计算，提高效率

Recursion

n 递归练习：字符串长度的递归实现

def str_len(s):

if s == '':

return 0

else:

return 1 + str_len(s[1:])

• 每次去掉第一个字符，直到字符串为空

• str_len("cat") → 1 + str_len("at") → ... → 得到3

Recursion

n 递归的陷阱与调试技巧

• 常见错误：

• 忘记基本情况 → 无限递归

• 基本情况写错 → 错误结果

• 调试建议：

• 手动画出调用过程

• 使用 print 或其他Python 工具将递归过程可视化出来

Recursion

n 递归练习1：递归计算列表中数字的和

• 编写一个函数 list_sum(lst)，递归计算列表中所有数字的和

• 示例：list_sum([1, 2, 3, 4]) → 10

• 提示：

• 基本情况：列表为空时返回0

• 否则返回第一个元素 + 剩余元素的和

Recursion

n 递归练习1：递归计算列表中数字的和

def list_sum(lst):

基本情况：列表为空

 if not lst:

return 0

递归情况：返回第一个元素 + 剩余元素的和

 return lst[0] + list_sum(lst[1:])

Recursion

n 递归练习2：支持嵌套列表的数字求和

• 实现函数 nested_sum(lst)，支持列表中包含嵌套子列表的情形：

• nested_sum([1, [2, [3, 4]], 5]) → 15

• 提示：使用递归判断元素是否为列表，再递归展开

• 思考：这个问题用递归是否比用迭代更简洁？

Recursion

n 递归练习2：支持嵌套列表的数字求和

def nested_sum(lst):

total = 0

for item in lst:

if isinstance(item, list):

total += nested_sum(item) # 如果是子列表，则递归调用

 else:

total += item # 否则直接加

 return total

Reading and QA Time

See you next week !

