
Python程序设计与实践

专业高级技术拓展

第八课：图像、文本、嵌套、计时

2025.4

Today

n 图像与动画的处理

n 深入的文本数据的处理

n 嵌套数据类型的处理

n 计时与计数的使用

Image & Animation

n 如何使用Python进行基础图像处理和简单动画制作

• 理解图像的基本组成与像素的原理

• 掌握使用Python操作和修改静态图像的方法

• 学会使用tkinter模块进行基本图形绘制与动画制作

• 理解动画的时间循环机制与坐标变换的实现方式

• 为后续计算机视觉或游戏开发打下基础

Image & Animation

n 什么是图像？
• 图像由一个个小方格组成，这些小方格称为像素（Pixel）

• 每个像素包含3个颜色分量：红（R）、绿（G）、蓝（B），每个分量范围为0~255

• 图像可看作一个二维矩阵，坐标系原点在左上角，x轴向右延展，y轴向下延展

• 一个像素RGB值为（255, 0, 0）表示纯红色，(0, 255, 0) 表示纯绿色

• 像素操作是图像处理的基础，比如变暗、增强某种颜色、提取特定区域等

Image & Animation

n 图像坐标系统

• 坐标原点(0, 0)位于图像左上角

• x 轴向右增长，y 轴向下增长

• 每个像素在二维坐标中对应唯一(x, y)位置

• 图像在程序中是一个像素矩阵，可通过坐标(x, y)访问

Image & Animation

n Python中的图像处理工具

• Python常用图像处理库：Pillow

• Image 是 Pillow 中的核心类，用于打开和操作图像

• show() 方法会打开默认图像查看器预览图像

from PIL import Image

img = Image.open('cat.jpg')

img.show()

Image & Animation

n Python中的图像处理——变暗

• 使用 Pillow 的 ImageEnhance 模块可以调整图像亮度

• 变暗操作的原理是将亮度乘以一个 < 1 的因子

• 示例代码：

from PIL import Image, ImageEnhance

img = Image.open('cat.jpg')

enhancer = ImageEnhance.Brightness(img)

darker_img = enhancer.enhance(0.5) # 亮度降低为原来的⼀半

darker_img.show()

Image & Animation

n Python中的图像处理——灰度化

• 灰度图像只包含亮度信息，无色彩

• Pillow中可以直接使用ImageOps.grayscale方法实现

• 常用于图像分析前的预处理

• 示例代码：

from PIL import ImageOps

gray = ImageOps.grayscale(img)

gray.show()

Image & Animation

n Python中的图像处理——提取红色通道

• 仅保留红色通道，设置G、B值为0

• 代码逻辑：遍历每个像素，手动调整RGB值
image = img.convert("RGB")
width, height = image.size
pixels = image.load()
for y in range(height):

for x in range(width):
r, g, b = pixels[x, y]
img.putpixel((x, y), (r, 0, 0))

img.show()

Image & Animation

n Python中的图像处理——镜像翻转

• 图像的镜像翻转可以使用 Pillow 的 transpose 方法

• Image.FLIP_LEFT_RIGHT 可实现水平镜像

• 示例代码：

mirrored = img.transpose(Image.FLIP_LEFT_RIGHT)

mirrored.show()

Image & Animation

n Python中的图像处理——缩放与旋转

• 使用 resize() 实现缩放，rotate() 实现旋转

• rotate(角度) 会绕中心点顺时针旋转图像

• 示例代码：

img.resize((150, 150)).show() # 缩小图像尺寸

img.rotate(45).show() # 顺时针旋转45度

Image & Animation

n Python中的图像处理——绿幕替换与图像合成

• 利用绿色背景作为屏蔽色，将其替换为其他图像中对应像素

• 代码示例：
cat = Image.open("cat.jpg").resize((300, 300))
pixels = cat.load()
阈值判定背景区域：将亮度较高的区域替换为绿色
for y in range(cat):

for x in range(cat.width):
r, g, b = pixels[x, y]
avg = (r + g + b) / 3
if avg > 180: # 高亮度

pixels[x, y] = (0, 255, 0)

Image & Animation

n Python中的图像处理——绿幕替换与图像合成

• 利用绿色背景作为屏蔽色，将其替换为其他图像中对应像素

• 代码示例：
pixels_bg = flower.load()
for y in range(cat.height):

for x in range(cat.width):
r, g, b = pixels_fg[x, y]
avg = (r + g + b) / 3
if g > avg * 1.5 and g > 150: # 绿色占主导，视为绿幕

 pixels_fg[x, y] = pixels_bg[x, y]

Image & Animation

n Python中的动画制作与tkinter介绍

• 动画是通过快速更新图像内容形成的视觉动态效果

• 使用 tkinter 模块中的 Canvas 可以实现动画效果

• 动画核心组成包括：

• 创建画布：canvas = Canvas(width, height)

• 创建形状：canvas.create_oval(), create_rectangle()

• 控制移动：canvas.move(shape, dx, dy)

• 实时刷新：canvas.update() + time.sleep(间隔)

Image & Animation

n Python中的动画制作与tkinter介绍

• 动画机制本质是一个持续的“心跳循环”：

• 每次更新 → 暂停一段时间 → 再次更新 → 形成帧

• tkinter 是Python自带的GUI工具包，支持画布Canvas操作

• 常用方法：create_oval, move, update 等

• 通过循环和时间延迟不断更新图像位置，实现动画效果

Image & Animation

n Python中的动画制作与tkinter介绍

• tkinter制作动画代码基本结构

import tkinter as tk

root = tk.Tk()

canvas = tk.Canvas(...)

shape = canvas.create_oval(...)

canvas.move(shape, dx, dy)

canvas.after(20, ...)

root.mainloop()

Image & Animation

n Python中的动画制作与tkinter介绍

• 动画制作举例：

Image & Animation

n Python中的动画制作与tkinter介绍

• 举例：

import tkinter as tk # 导⼊ Tkinter 模块

root = tk.Tk()

• 创建主窗口对象 root，所有 Tkinter 程序的起点，

相当于应用的容器窗口

Image & Animation

n Python中的动画制作与tkinter介绍

• 举例：

canvas = tk.Canvas(root, width=600, height=400, bg='white')

• 在主窗口 root 中创建一个 画布，大小为 600×400 像素，背景为白色

canvas.pack()

• 使用 pack() 方法将画布添加进窗口（否则不会显示）

Image & Animation

n Python中的动画制作与tkinter介绍

• 举例：

points = (50, 150, 200, 350)

• 定义一个四元组 points，表示椭圆外接矩形的左上角 (50, 150) 到右下

角 (200, 350)

shape = canvas.create_oval(*points, fill='purple')

• 创建一个椭圆，颜色为紫色，存储为 shape 对象的 ID

• *points 解包，将四个值分别传入函数参数中

Image & Animation

n Python中的动画制作与tkinter介绍

• 举例：

dx, dy = 5, 3

• 定义每帧中椭圆在水平方向（x轴）和垂直方向（y轴）移动的像素距离

• 可以理解为“速度向量”

def animate():

• 定义一个动画函数 animate()，该函数会在每一帧更新图形位置，并调用

自身实现循环

Image & Animation

n Python中的动画制作与tkinter介绍

• 举例：

global dx, dy

• 声明要在函数内使用函数外部的变量 dx 和 dy

canvas.move(shape, dx, dy)

• 将图形 shape 沿当前速度向量 (dx, dy) 移动

• 移动单位是像素

Image & Animation

n Python中的动画制作与tkinter介绍

• 举例：

x1, y1, x2, y2 = canvas.coords(shape)

• 获取当前图形 shape 的边界框坐标

• 返回的是 (左上x, 左上y, 右下x, 右下y)

• 用于判断是否碰到了边界

Image & Animation

n Python中的动画制作与tkinter介绍

• 举例：

if x2 >= 600 or x1 <= 0:

 dx = -dx

• 如果图形右侧超过画布右边界，或左侧小于0，就反向 dx

• 实现“水平反弹”

if y2 >= 400 or y1 <= 0:

 dy = -dy

• 同理，判断上下边界，实现“垂直反弹”

Image & Animation

n Python中的动画制作与tkinter介绍

• 举例：

canvas.after(20, animate)

• 设置20毫秒后再次调用 animate()

• 实现动画循环的关键，不会阻塞窗口主线程

• 大约每秒50帧的刷新率（1000ms / 20ms ≈ 50fps）

Image & Animation

n Python中的动画制作与tkinter介绍

• 举例：

animate()

• 启动动画循环，调用一次 animate() 进入定时递归

root.mainloop()

• 启动 Tkinter 的主事件循环

• 程序在此阻塞等待用户交互（窗口关闭、鼠标点击等）

• 是 GUI 程序的核心运行入口

Image & Animation

n Python中的动画制作与tkinter介绍

• 拓展：多个小球碰撞动画

Image & Animation

n Python图像与动画总结：

• 图像处理部分：

- 理解像素与RGB概念，掌握 Pillow 图像处理

- 实现图像亮度调节、通道提取、镜像与合成

• 动画部分：

- 学会使用 tkinter 创建画布与图形

- 实现基本移动动画与弹跳逻辑

Text Processing

n 深入使用Python进行文本处理

• 掌握字符串的高级使用方法和实用技巧

• 掌握ASCII与字符编码的处理

• 字符串的比较与排序操作

• 应用场景：

• 文本数据预处理与清洗

• 信息抽取与分析

• 输入验证与编码

• 加密与解密

Text Processing

n 字符串高级用法

• 由字符组成的有序序列，类型为str，不可变数据

方法 功能
startswith(s) 判断是否以某个子串开头
endswith(s) 判断是否以某个子串结尾
title() 所有单词首字母大写
capitalize() 首字母大写，其余小写
zfill(n) 左侧补零使字符串长度为 n

center(n, char) 居中对齐，用 char 填充到 n 长度

"python".zfill(8) → '00python’
"hello".center(9, '-') → '--hello--'

Text Processing

n 字符串高级用法
• 分割与拼接操作

• split() 和 join() 是文本预处理中的利器

• split() 将字符串分割为列表

• join() 将列表合并为字符串

text = "this is a test”

words = text.split() # ['this', 'is', 'a', 'test’]

rejoin = "-".join(words) # 'this-is-a-test'

Text Processing

n 字符串高级用法
• 字符查找与替换

msg = "banana banana”

print(msg.replace("na", "NA")) # baNANA banana

• 多用于文本模板替换、批量替换关键词

方法 功能
find(sub) 返回首次出现的位置
rfind(sub) 返回最后一次出现的位置

Text Processing

n 字符串高级用法
• 大小写处理与标准化

s = "hello WORLD"

print(s.swapcase()) # 'HELLO world'

• 多文本统一格式并帮助文本比较与分类

方法 功能说明
upper() 全部转换为大写
lower() 全部转换为小写
title() 所有单词首字母大写
swapcase() 大小写互换

Text Processing

n 字符串高级用法
• 字符串判断型方法（返回布尔值）

print("ABC123".isalnum()) # True

print(" ".isspace()) # True

方法 功能
isalpha() 是否全为字母
isdigit() 是否全为数字
isalnum() 是否只含字母或数字
isspace() 是否只含空白字符

Text Processing

n 字符串高级用法
• 字符与ASCII编码的转换

• ASCII 是最基本的字符编码系统

• ord(char)：字符 → 整数

• chr(int)：整数 → 字符

• print(ord('A')) # 65

• print(chr(97)) # 'a'

Text Processing

n 字符串高级用法
• 字符编码与加密

def caesar_encrypt(text, shift):
result = ''
for ch in text:

if ch.isalpha():
base = ord('A') if ch.isupper() else ord('a')
result += chr((ord(ch) - base + shift) % 26 + base)

else:
result += ch

return result

• caesar_encrypt("Hello", 2) → Jgnnq

Text Processing

n 字符串高级用法
• 字符串比较与排序

• 字符串比较按字典序（lexicographic order）

• 'A' < 'B' < 'Z' < 'a' < 'b'

• 区分大小写，大写在前，按字母顺序比较

print("apple" < "banana") # True

print("Zebra" < "apple") # True

print("Abc" == "abc") # False

• 用于排序、搜索、词典处理等

Text Processing

n 文本处理实战
• 文本反转处理：实现一个函数，反转输入的英文句子

def reverse_words(sentence):

 words = sentence.split()

 return ' '.join(reversed(words))

reverse_words("hello world python")

"python world hello"

Text Processing

n 文本处理实战
• 统计关键词频：输入文本，输出单词对应词频字典

def keyword_count(text):

 words = text.lower().split()

 return {w: words.count(w) for w in set(words)}

keyword_count("this is a test this is only a test")

{'this': 2, 'is': 2, 'a': 2, 'test': 2, 'only': 1}

• 可用于舆情分析、搜索推荐

Text Processing

n 文本处理实战
• 去除标点与清洗文本：输入文本，输出大小写标准化、去除标点的文本

import string

def clean_text(text):

 return text.translate(

str.maketrans('', '', string.punctuation)

).lower()

clean_text("Hello, world!")

"hello world"

Text Processing

n 文本处理实战
• 检测email邮箱格式：

def is_valid_email(s):

 return "@" in s and "." in s and s.index('@') <

s.rindex('.')

• s.rindex() # 字符串中最后出现某字符的index

• is_valid_email("abc@xyz.com") # True

• is_valid_email("abc@xyzcom") # False

Text Processing

n 文本处理实战
• 提取文件拓展名：

def get_extension(filename):

 parts = filename.split('.')

 return parts[-1] if len(parts) > 1 else ''

• get_extension("photo.jpg") → "jpg"

• get_extension("README") → ""

Text Processing

n 文本处理实战
• 判断回文字符串：

• 正序和倒序完全一样（只考虑数字和字母）

def is_palindrome(s):

 clean = ''.join(c for c in s if c.isalnum()).lower()

 return clean == clean[::-1]

• is_palindrome("A man, a plan, a canal, Panama!") à True

Text Processing

n 文本处理实战
• 查找最长单词：

def longest_word(text):

 words = text.split()

 return max(words, key=len)

• longest_word("a fox jumps over a lazy dog") à "jumps"

• 适合文本结构分析

Text Processing

n 文本处理实战
• 按单词长度分组：

def group_by_length(text):

words = text.split()

groups = {}

for word in words:

groups.setdefault(len(word), []).append(word)

return groups

• group_by_length("the cat jumped over the fence")
à {3: ["the", "cat"], 6: ["jumped"], 4: ["over"], 5: ["fence"]}

Text Processing

n 文本处理要点：
• 常用字符串高级函数与编码技巧

• 字符比较与排序规则

• 面向应用的文本处理方案

• 拓展练习：

• 关键词高亮显示

• 简易搜索匹配引擎

• 用户名/邮箱/手机号验证器

• 批量处理文件名与路径提取

Nested Data

n 嵌套数据结构的概念与使用

• 掌握列表和字典嵌套使用的方法

• 掌握嵌套数据结构的操作和应用

• 示例：

• 列表中包含字典

• 字典中包含列表

• 字典中包含字典

Nested Data

n 为什么要使用嵌套数据结构？

• 可以有效组织复杂数据

• 易于数据访问和管理（Python自带的各种方法）

• 便于数据持久化存储（如JSON）

• 符合实际应用中的多种场景（一切现实对象的表示）

• 应用示例：

• 地图API、用户信息、游戏状态等

Nested Data

n 嵌套列表

• List of lists

matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

print(matrix[1][2]) # 输出: 6

• matrix为二维数组（矩阵），其数组形状可以用(3, 3)表示

• 对matrix中最细粒度元素的获取，即对每个维度逐一索引的过程

Nested Data

n 嵌套字典

• Dictionary of dictionaries

student = {

"name": "Anna",

"scores": {"math": 90, "english": 85}

 }

 print(student["scores"]["english"]) # 输出 85

• 字典的value可以是任意数据类型

• 获取value的过程是字典按key下钻的过程

Nested Data

n 混合嵌套

• List of dictionaries

students = [

{"name": "Tom", "score": 92},

{"name": "Lucy", "score": 88}

]

print(students[0]["name"]) # 输出 Tom

• 常用于有顺序的现实事物集合

Nested Data

n 混合嵌套

• Dictionary of lists

gradebook = {

"Tom": [88, 92, 85],

"Lucy": [90, 91, 89]

}

print(gradebook["Lucy"][1]) # 输出 91

• 常用于单个事物具有按顺序的属性

Nested Data

n 多层嵌套

• Dictionary of lists of dictionaries

data = {

"students": [

{"name": "Alice", "grades": {"math": 80, "cs": 90}},

{"name": "Bob", "grades": {"math": 70, "cs": 85}}

]

}

print(data["students"][1]["grades"]["cs"]) # 输出 85

• 根据场景需求的不同可以设置任意复杂程度的嵌套数据结构

Nested Data

n 嵌套数据结构的遍历

• 遍历list of lists:

 matrix = [[1, 2], [3, 4]]

 for row in matrix:

for item in row:

print(item)

• 遍历dictionary of lists：

 for name, scores in gradebook.items():

print(name, max(scores))

Nested Data

n 嵌套数据的反转

• 将字典的key-value进行反转，形成嵌套结构：

 ages = {"Tom": 20, "Jerry": 25, "Bob": 20}

 reversed_dict = {}

 for name, age in ages.items():

reversed_dict.setdefault(age, []).append(name)

 print(reversed_dict)

 # 输出：{20: ['Tom', 'Bob'], 25: ['Jerry’]}

• 用value做key时要注意多个key可能对应相同的value，用list保存

Nested Data

n JSON与Python嵌套结构的映射

• JSON格式：以字符串格式存储的嵌套数据结构

• 读取JSON数据为Python嵌套数据

 import json

 with open('data.json') as f:

data = json.load(f)

 with open('data.json') as f:

 json.dump(data, f)

Nested Data

n 嵌套数据结构的实例

• 天气数据

weather = {

"Monday": {"temp": 20, "humidity": 0.6},

"Tuesday": {"temp": 22, "humidity": 0.7}

}

for day, info in weather.items():

print(day, "温度：", info["temp"])

Nested Data

n 嵌套数据结构的实例

• 地图数据

markers = [

{"name": "Park", "pos": [25.12, 55.15]},

{"name": "Mall", "pos": [25.20, 55.27]}

]

for marker in markers:

print(marker["name"], "位于：", str(marker ["pos"]))

Nested Data

n 嵌套数据结构的实例

• OpenAI大模型聊天数据

response =

result["choices"][0]["message"]

["content”]

Timing and Counting

n 解决实际问题时往往面临效率上的考量

• 系统的准确性是基本保障，效率影响的是用户体验，二者缺一不可

• 搜索引擎每天处理数十亿条请求

• AI大模型需要在毫秒内给出响应

• 这么大的数据存下来要占用多少空间？

• 多块的响应才是满足用户要求的？

Timing and Counting

n 正确性与效率的权衡

• 正确性优先，但大数据处理或高频调用中效率至关重要

• 示例：基于递归的Fibonacci算法

正确但低效的递归实现

def fib(n):

if n <= 1:

return n

return fib(n-1) + fib(n-2)

• 结果正确但是分支爆炸

Timing and Counting

n 正确性与效率的权衡

memo = {}

def fast_fib(n):

if n in memo:

return memo[n]

if n <= 1:

return n

memo[n] = fast_fib(n-1) + fast_fib(n-2)

return memo[n]

• 使用记忆模块提高效率，空间换时间

Timing and Counting

n时间效率与空间效率

• 时间效率：运行快慢

• 空间效率：内存使用量

• 常见权衡方式：缓存中间结果（空间换时间）、数据预处理（时间换空间）

• 在资源有限场景下，对于程序时间和空间的衡量至关重要

• 根据资源的特点选择权衡的方式

Timing and Counting

n衡量时间效率——计时模块

• Python内置 time 模块：测量一段代码执行前后的时间间隔

import time

start = time.time()

要测量的代码

end = time.time()

print("运行时间：", end - start, "秒")

• time.time() 返回当前时间戳（1970以来的秒数）

Timing and Counting

n衡量时间效率——计时模块

• 有些代码耗时不随输入变化

• 如：温度换算算法

def c_to_f(c):

return c * 9.0 / 5 + 32

start = time.time()

c_to_f(37)

print("耗时：", time.time() - start)

• 几乎感受不到耗时

Timing and Counting

n衡量时间效率——计时模块

• 有些代码耗时随输入的变化而变化

• 如：累加函数

def mysum(x):

total = 0

for i in range(x+1):

total += i

return total

• 尝试不同输入：100, 1000, 10000

• 耗时随输入值的增加而线性增长

Timing and Counting

n衡量时间效率——计时模块

• 有些代码耗时随输入的变化而变化

• 如：基于加法的平方函数

def square(n):

sqsum = 0

for i in range(n):

for j in range(n):

sqsum += 1

return sqsum

• 双层循环 → 随输入的增大耗时呈平方指数增长

Timing and Counting

n衡量时间效率——操作计数

• 计时并不完全稳定和准确

• 不同电脑、系统、后台进程、语言实现均会影响时间结果

• 计时适合初步评估，不适合精确比较

• 是否有更加准确的评估程序效率的方式？

• 操作计数

• 忽略机器因素，只关注操作步骤数

• 假设基本操作如加法、赋值视为常数时间

• 主要分析控制结构（循环）

• 优势：与机器无关，评估算法结构优劣

Timing and Counting

n衡量时间效率——操作计数

• 操作计数的示例

• 温度换算算法：

def c_to_f(c):

return c * 9.0 / 5 + 32

• 操作数：乘法（1），除法（1），加法（1）à 总计3步

• 无论输入值多少，操作数恒定

Timing and Counting

n衡量时间效率——操作计数

• 操作计数的示例

• 累加函数：

def mysum(x):

total = 0 # 1

for i in range(x+1): # x+1 次

 total += i # x+1 次

 return total # 1

• 总操作数：1 + (x+1)*2 + 1 = 2x + 4

• 线性增长，符合O(n) （时间复杂度与输入参数的关系为一次线性函数）

Timing and Counting

n衡量时间效率——操作计数

• 操作计数的示例

• 基于加法的平方函数：

def square(n):

sqsum = 0

for i in range(n):

for j in range(n):

sqsum += 1

return sqsum

• 总操作数：n*n 次加法 = O(n²)时间复杂度与输入参数的关系为二次指数函数

Timing and Counting

n计时与计数对比

特性 计时 计数
精度依赖 高，受环境影响 低，独立于系统
是否可复现 否 是
对算法评估 一般 精确
分析结构优势 弱 强

Timing and Counting

n算法复杂度——大O

• 操作计数提供定量分析

• 仍需要给出系统的增长趋势描述

• 关注省略常数系数与低阶项后的系统主要开销

• 算法复杂度分析：大O

• 常见复杂度：O(1), O(n), O(n²), O(log n)

Timing and Counting

n如何基于大O分析优化已有算法

• 原始的累加函数：

def mysum(x):

total = 0 # 1

for i in range(x+1): # x+1 次

 total += i # x+1 次

 return total # 1

• 只关注高阶项：n次循环

• 算法复杂度：O(n)

Timing and Counting

n如何基于大O分析优化已有算法

• 改进后的累加函数：

def mysum_fast(n):

return n * (n + 1) // 2

• 循环的线性增长变为了一次计算结果（虽然有多个常数操作）

• 复杂度变化：O(n) → O(1) （有多个常数操作，可以忽略常数项）

Timing and Counting

n分析一段代码的复杂度

• 三重嵌套：

def triple_loop(n):

count = 0

for i in range(n):

for j in range(n):

for k in range(n):

count += 1

return count

• 操作计数：n³ 次加法 → 算法复杂度：O(n³)

Timing and Counting

n计时与计数总结

• 计时方法快速精准但不稳定

• 操作计数适合分析算法效率

• 大O复杂度帮助我们关注增长趋势

• 写代码时应兼顾正确性和效率

Reading and QA Time

See you next week !

