
Python程序设计与实践

专业高级技术拓展

第九课：类与面向对象编程

2025.5

Today

n 掌握类、对象与OOP核心机制，实现模块化与可扩展编程

n 理解类的构建方式、对象的使用方法，以及OOP的基本思想

n理解 Dunder 方法（双下划线方法）的本质与用法

n熟练设计复合对象类、重载常见运算符、进行类型检查

Class and OOP

n 现实世界中的对象及其属性与方法
• 我们生活中充满了“对象”：如“电梯”“员工”“订单”“顾客队列”等

• 每个对象都有状态（属性）和行为（方法）：

• 电梯：状态（所在楼层、是否有人），行为（上升、下降）

• 员工：状态（姓名、工资），行为（出勤、交报告）

• 队列：状态（等待的人列表），行为（入队、出队）

• 如果我们希望在程序中模拟这些实体并实现其逻辑，应该使用什么方式？

• 这正是“类”的作用

• 定义“类”就是在针对真实场景建模

Class and OOP

n 什么是对象（Object）
• 类是对一组具有相同属性和方法的对象的抽象描述，而对象是类的具体实例

• 在Python中，“一切皆对象”

• 基本类型如整数、浮点数、字符串、列表、字典等，本质上都是某个类的对象实例

• 每个对象都具有：

• 内部数据结构（由属性表示，如整数的二进制表示、列表的链式结构）

• 一组方法，用于与对象交互（如.append()、.upper()）

• 对象不仅仅是数据，还包含对这些数据的操作方式，是数据+行为的封装体

x = 3 # int对象，支持加减乘除等操作
s = "hi" # str对象，支持拼接、切片、查找等
L = [1, 2] # list对象，支持增删查改

Class and OOP

n 面向对象编程（OOP）
• OOP 是一种编程范式，它将程序组织为“对象”的集合，封装状态和行为

• Python 是支持 OOP 的语言，提供关键机制：

• 类（class）、对象（object）、封装（encapsulation）、

继承（inheritance）、多态（polymorphism）

• OOP的优势：

• 提升程序结构清晰度

• 支持模块化与复用

• 降低耦合度，便于维护与扩展

Class and OOP

n 对象与类的基本概念
• 类（class）是一个用户定义的数据类型，是对象的蓝图

• 对象（object）是类的实例，是在程序中实际存在的实体

• 类中可以定义数据属性（存储状态）、方法（定义行为）

• 类是抽象的，只有通过实例化后对象才具有实际意义

• Python具有自动内存管理机制，对象无需手动释放，垃圾回收器（GC）会处理

Class and OOP

n 类的设计动机与生活类比
• 编写大型程序时，数据与操作往往是紧密关联的

• 类的设计将数据与操作方法打包成一个整洁的单元

• 类 = 模板；对象 = 实例

• 图纸是“类”，具体建成的房子是“对象”

• 人的DNA是“类”，我们每个人是“对象”

• 使用类可以反复创建多个“功能相似但状态不同”的对象

Class and OOP

n 用Python定义类——class关键字
• Python中使用 class 关键字定义类

• 语法说明：

• 类名采用驼峰式命名法（如 MyClass、StudentRecord）

• : 号表示类体开始，类体内部通过缩进定义属性与方法

• 类定义本身不会创建任何对象，只有调用类名时才会实例化

class Coordinate:
pass # 暂不定义内容

c = Coordinate() # 创建对象，遵循Coordinate类的模板

Class and OOP

n 创建类的实例（Instantiation）
• 实例化 = 使用类创建对象，即“类名 + 括号参数”调用构造方法

• 每个实例会独立存储一份属性副本

• 实例化时Python自动调用 __init__ 构造方法，不需要显式传入 self

• 定义class时必须含有__init__方法

• 方法的参数在创建对象时给出具体值

由同⼀个类创建两个不同的实例
c1 = Coordinate(3, 4)
c2 = Coordinate(0, 0)

print(c1.x) # 输出 3
print(c2.x) # 输出 0

Class and OOP

n 方法（Method）定义与使用
• 方法是类内部定义的函数，用于描述对象的行为

• 在类中定义方法时，第一个参数永远是 self，代表当前实例对象

• 示例：定义计算两点距离的方法

c1 = Coordinate(3, 4)
c2 = Coordinate(0, 0)
print(c1.distance(c2)) # 5.0 c1.distance(c2) → self = c1, other = c2

class Coordinate:
def __init__(self, x, y):

self.x = x
self.y = y

def distance(self, other):
return ((self.x - other.x)**2 + (self.y - other.y)**2)**0.5

Class and OOP

n 方法的调用机制详解
• 调用对象方法时，本质上是调用类中定义的函数，并自动将调用者作为第一个参数传入

• 以下两种方式是等价的

• Python内部机制：

• 通过 . 查找 distance 方法

• 自动绑定 self = c1，传入其他参数

• 执行方法体

c1.distance(c2)
等价于
Coordinate.distance(c1, c2)

Class and OOP

n 面向对象的三大特性
• Python支持OOP的三大核心特性

• 封装（Encapsulation）：数据+方法打包到对象中，隐藏内部实现

• 继承（Inheritance）：子类可以复用父类的代码并扩展

• 多态（Polymorphism）：相同方法名适用于不同对象，行为表现不同

• 调用对象方法时，本质上是调用类中定义的函数，并自动将调用者作为第一个参数传入

Class and OOP

n 默认封装方法：__str__
• 默认打印对象只显示内存地址：如 <__main__.Coordinate object at 0x...>

• 可通过重写 __str__ 方法定义自定义字符串表示

• 使用 print(c1) 时自动调用 __str__ 方法，输出更加直观

class Coordinate:
def __init__(self, x, y):

self.x = x
self.y = y

def __str__(self):
return f"({self.x}, {self.y})”

Class and OOP

n 类中的私有方法与公有接口
• 类中的方法也可以使用 _ 或 __ 作为前缀区分

• _helper()：内部使用方法（受约定保护）

• __secure_calc()：避免外部或子类直接访问

• 公有方法用于定义“接口”

• 私有方法和属性用于“实现细节”

class Bank:
def __init__(self, balance):

self._balance = balance

def deposit(self, amt):
self._balance += amt

def _log(self):
print(f"当前余额：{self._balance}")

Class and OOP

n 封装原则与命名规范
• Python采用命名约定实现属性私有化（区分对外接口和对内实现，没有严格私有机制）：

• _var：建议仅类内部访问

• __var：类名重整机制（name mangling），防止子类访问

• 建议：使用 _ 开头命名内部变量，如 _balance

• 示例：隐藏余额的银行账户类（BankAccount）：

class BankAccount:
def __init__(self, name, balance):

self.name = name
self._balance = balance # 内部使⽤

 def deposit(self, amount): # 外部通过接⼝访问内部变量
self._balance += amount

def get_balance(self):
return self._balance

Class and OOP

n 实例：定义一个简单的学生类
• 目标：定义一个 Student 类，实现以下功能

• 初始化学生姓名、成绩

• 添加分数、计算平均成绩

• 实现 __str__ 方法输出信息

class Student:
def __init__(self, name):

self.name = name
self.scores = []

def add_score(self, score):
self.scores.append(score)

def average(self):
return sum(self.scores)/len(self.scores)

def __str__(self):
return f"{self.name}, 平均分:{self.average()}"

s = Student("⼩明")
s.add_score(85)
s.add_score(90)
print(s)

Class and OOP

n 对象之间的组合（Composition）
• 类与类之间不仅可以继承，还可以组合，即一个类的属性是另一个类的实例

• 示例：每个学生对象包含一个地址对象

• 组合的优势：

• 模块化：每个类负责一个职责

• 可重用：Address类可用于多个实体

class Address:
def __init__(self, city, street):

self.city = city
self.street = street

class Student:
def __init__(self, name, address):

self.name = name
self.address = address

addr = Address("上海", "中⼭路99号")
s = Student("李雷", addr)
print(s.address.city) # 输出：上海

Class and OOP

n 构造函数中的默认参数与可选项
• 构造方法 __init__ 可使用默认参数简化对象创建过程

• 不要用[]等可变对象作为默认值

（创建对象时仅在创建别名，列表会被多个类的对象共享）

• 推荐写成 scores=None，再手动判断处理

class Student:
def __init__(self, name, scores=None):

self.name = name
self.scores = scores if scores else []

s1 = Student("⼩红") # scores 默认为空列表
s2 = Student("⼩明", [90, 95]) # 初始化已给分数

Class and OOP

n 类中的属性
• 类中的变量叫做“属性”，用于表示对象的状态

• 属性分为两种：

• 实例属性：每个对象自己的属性（如每个点的坐标值，可在实例化时指定）

• 类属性：所有对象共享的属性（如所有点都在二维空间，类定义时直接给出）

• 例子：为Coordinate类增加属性

• self 代表当前对象本身，属性通过 self.属性名 赋值

• 每个对象有不同的x和y

class Coordinate:
def __init__(self, x, y):

self.x = x
self.y = y

Class and OOP

n 类属性与实例属性的区别
• 类属性：定义在类体中，所有实例共享

• 实例属性：定义在 __init__ 或 self. 中，每个实例独有

• 修改类属性会影响所有实例

• 但实例属性互不干扰

class Dog:
species = "Canine" # 类属性

 def __init__(self, name):
self.name = name # 实例属性

d1 = Dog("Tommy")
d2 = Dog("Lucky")
print(d1.species, d2.species) # Canine Canine
print(d1.name, d2.name) # Tommy Lucky

Class and OOP

n 示例：动物类建模练习
• 目标：设计一个简单的 Animal 类，并基于它扩展出 Cat 和 Dog 子类

• 要求：

• Animal：具有名字、体重属性，定义通用方法 speak()

• 子类 Dog 和 Cat 分别重写 speak()，实现“汪汪”和“喵喵”

class Animal:
def __init__(self, name, weight):

self.name = name
self.weight = weight

def speak(self):
return "发出声⾳"

class Dog(Animal):
def speak(self):

return "汪汪"

class Cat(Animal):
def speak(self):

return "喵喵"

Class and OOP

n 类的继承（Inheritance）
• 子类可以继承父类的属性和方法，避免重复代码

• 使用语法：class 子类名(父类名):

• 子类可以使用父类的所有“公有”方法/属性

class Animal:
def speak(self):

return "发出声⾳"

class Dog(Animal):
pass

d = Dog()
print(d.speak()) # 输出：发出声⾳

Class and OOP

n 方法重写（Overriding）
• 子类可以定义与父类同名的方法以实现不同行为，这称为“重写”

• 运行时调用哪个方法取决于对象的真实类型，而不是变量类型

• 这正是多态的基础

class Dog(Animal):
def speak(self):

return "汪汪"

class Cat(Animal):
def speak(self):

return "喵喵"

Class and OOP

n 使用 super() 调用父类方法
• super() 用于在子类中调用父类的方法，避免重复代码

• 应用场景：

• 子类扩展父类功能

• 多重继承中安全调用方法链（只需写一次super）

class Animal:
def __init__(self, name):

self.name = name

class Dog(Animal):
def __init__(self, name, breed):

super().__init__(name) # 调⽤⽗类构造函数
 self.breed = breed

Class and OOP

n 多态性（Polymorphism）与统一接口设计
• 多态：相同方法调用作用于不同类型的对象，表现出不同的行为

• 优点：

• 调用代码与具体类解耦

• 便于统一操作多个类

def animal_speak(animal):
print(animal.speak())

animal_speak(Dog("Lucky", 10)) # 汪汪
animal_speak(Cat("Kitty", 5)) # 喵喵

Class and OOP

n 示例：类层次设计（员工管理系统）
• 目标：建立一个基础的员工系统，包含通用员工（Employee）和两种特殊员工

• 工程师（Engineer）、销售（Sales）

• 设计要点：

• Employee：姓名、基本工资、计算年薪方法 get_annual_salary()

• Engineer：年薪为基本工资 * 13

• Sales：年薪为基本工资 * 12 + 销售提成

Class and OOP

n 示例：类层次设计（员工管理系统）
class Employee:

def __init__(self, name, base_salary):
self.name = name
self.base_salary = base_salary

def get_annual_salary(self):
return self.base_salary * 12

class Engineer(Employee):
def get_annual_salary(self):

return self.base_salary * 13
class Sales(Employee):

def __init__(self, name, base_salary, bonus):
super().__init__(name, base_salary)
self.bonus = bonus

def get_annual_salary(self):
return self.base_salary * 12 + self.bonus

Class and OOP

n 示例：图书管理系统
• 场景：构建一个图书馆系统，管理书籍与借阅信息

• 类设计思路：

• Book 类：包含书名、作者、ISBN等属性

• LibraryUser 类：包含用户姓名、已借书籍列表、借书、还书方法

Class and OOP

n 示例：图书管理系统
class Book:

def __init__(self, title, author, isbn):
self.title = title
self.author = author

 self.isbn = isbn

class LibraryUser:
def __init__(self, name):

self.name = name
self.borrowed_books = []

def borrow(self, book):
self.borrowed_books.append(book)

def return_book(self, book):
self.borrowed_books.remove(book)

Class and OOP

n 面向对象模块化结构建议
• 建议一个中型项目中，类的组织结构为：

• 优点：

• 每个类或职责分布在独立模块，清晰可维护

• 避免类之间耦合

• 便于单元测试与重用

/project
├── main.py # 程序⼊⼝

 ├── student.py # Student类定义
 ├── course.py # Course类定义
 ├── utils.py # ⼯具函数
 └── data/

└── students.csv # 学⽣数据

引用项目中的模块：

from student import Student

Class and OOP

n 回顾类的基本使用方式与深度设计视角
• 面向对象有两个视角：

• 使用类：即实例化、调用方法、访问属性

• 设计类：定义属性、构造方法、封装行为

• 使用 vs 实现：

• 从“调用类”转向“设计类”视角

• 如何让我们的类更像“内建对象”

使⽤⻆度
c1 = Coordinate(3, 4)
print(c1.distance(Coordinate(0, 0)))

实现⻆度（类定义）
class Coordinate:

def __init__(self, x, y):
self.x = x
self.y = y

def distance(self, other):
...

Class and OOP

n 使用类构建类 —— 类的组合设计
• 类与类之间可以“组合”，即某个类的属性是另一个类的对象

• 使用场景举例：

• Circle 类的中心是 Coordinate 对象，表示二维空间中的圆

• 好处：

• 提高可重用性

• 设计上更贴近现实世界

class Circle:
def __init__(self, center, radius):

self.center = center # Coordinate 实例
 self.radius = radius

Class and OOP

n 输入类型检查与异常机制
• 在 __init__ 中可以使用 isinstance() 判断参数是否符合要求

• 好处：

• 提高程序健壮性

• 明确接口契约

class Circle:
def __init__(self, center, radius):

if not isinstance(center, Coordinate):
raise ValueError("center必须是Coordinate类型")

if not isinstance(radius, int):
raise ValueError("radius必须是整数")

self.center = center
self.radius = radius

Class and OOP

n 为已有的类设计方法
• 实现一个实例方法 is_inside(point)

• 判断某个点是否在圆内（欧几里得距离 < 半径）

class Circle:
def __init__(self, center, radius):

…
def is_inside(self, point):

return self.center.distance(point) < self.radius

c = Coordinate(2, 2)
p = Coordinate(1, 1)
circle = Circle(c, 2)
print(circle.is_inside(p)) # 输出 True

Class and OOP

n 类中的特殊方法（Dunder Methods）
• Python中很多操作（如 +、print()、len()）本质上是方法调用

• 特殊方法以双下划线（double underscore）开头和结尾

• __init__：构造方法

• __str__：打印时使用

• __add__：+ 运算

• __eq__：== 比较

• __len__：len() 函数

• 通过定义这些方法，可以让自定义类表现得“像内置类型”一样自然

Class and OOP

n 自定义 __str__() 打印方法
• 默认打印一个对象只显示内存地址，不直观

• 自定义 __str__ 提供人类友好的输出

f = Fraction(3, 4)
print(f) # 输出：<__main__.Fraction object at 0x...>

class Fraction:
def __init__(self, n, d):

self.num = n
self.denom = d

def __str__(self):
return f"{self.num}/{self.denom}"

f = Fraction(3, 4)
print(f) # 输出：3/4

Class and OOP

n 实现 __add__() 运算符重载
• 想实现 f1 + f2，需要重载 __add__() 方法

• Python将 f1 + f2 转换为 f1.__add__(f2)

f1 = Fraction(1, 3)
f2 = Fraction(1, 6)
f3 = f1 + f2
print(f3) # 输出：9/18

class Fraction:
...
def __add__(self, other):

top = self.num * other.denom + other.num * self.denom
bottom = self.denom * other.denom
return Fraction(top, bottom)

Class and OOP

n 实现 __mul__() 与类型转换 __float__()
• __mul__()：实现乘法运算

• __float__()：用于转换为浮点数

def __float__(self):
return self.num / self.denom

def __mul__(self, other):
return Fraction(self.num * other.num, self.denom * other.denom)

f = Fraction(3, 4)
print(float(f)) # 输出：0.75

Class and OOP

n 继续为以上类拓展核心方法
• 为 Fraction 类添加 reduce() 方法用于将分数化简

• 注意：返回的是新对象，不改变原对象

def reduce(self):
def gcd(a, b): # 找最⼤公约数

while b != 0:
a, b = b, a % b

return a
g = gcd(self.num, self.denom)
return Fraction(self.num // g, self.denom // g)

f = Fraction(10, 20)
print(f.reduce()) # 输出：1/2

Class and OOP

n 实现 __eq__() 方法 —— 自定义等号比较
• 默认情况下，Python使用对象的内存地址来判断是否相等

• 自定义 __eq__() 让比较基于值

f1 = Fraction(1, 2)
f2 = Fraction(2, 4)
print(f1 == f2) # False（尽管数学上相等）

def __eq__(self, other):
return self.num * other.denom == self.denom * other.num

f1 = Fraction(1, 2)
f2 = Fraction(2, 4)
print(f1 == f2) # True

Class and OOP

n 对象类型检查
• 在定义类方法时，检查参数是否是合法类型是一种好习惯

• 使用 isinstance() 比较而不是 type(x) == ...，因为支持继承链判断

def __add__(self, other):
if not isinstance(other, Fraction):

raise TypeError("只能加Fraction类型")
...

print(isinstance(3, int)) # True
print(isinstance(True, int)) # True（因为bool是int⼦类）
print(isinstance("abc", str)) # True

Class and OOP

n 方法调用 与 运算符背后的机制
• 运算符其实只是语法糖，方法调用才是本质

• 推荐使用“语法糖”的写法，提高可读性

a = Fraction(1, 2)
b = Fraction(2, 3)

三种写法本质等价：
print(a * b) # 语法糖
print(a.__mul__(b))
print(Fraction.__mul__(a, b))

Class and OOP

n 练习：设计一个 Vector2D 向量类
• 目标：实现一个 2D 向量类，支持以下操作：

• 向量加法（+）

• 向量打印（__str__）

• 向量长度（magnitude()）

Class and OOP

n 练习：设计一个 Vector2D 向量类
import math

class Vector2D:
def __init__(self, x, y):

self.x = x
self.y = y

def __add__(self, other):
return Vector2D(self.x + other.x, self.y + other.y)

def __str__(self):
return f"<{self.x}, {self.y}>"

def magnitude(self):
return math.sqrt(self.x ** 2 + self.y ** 2)

v1 = Vector2D(1, 2)
v2 = Vector2D(3, 4)
print(v1 + v2) # 输出：<4, 6>
print(v1.magnitude()) # 输出：2.236...

Class and OOP

n 类中特殊方法协同使用
• 当一个类组合了另一个类对象时，可以将方法调用“转发”

• 例如 Circle 类中调用 Coordinate 的 字符串输出 方法

class Circle:
def __init__(self, center, radius):

self.center = center
self.radius = radius

def __str__(self):
return f"Circle(center={self.center}, radius={self.radius})"

Class and OOP

n 类中特殊方法协同使用
• 当一个类组合了另一个类对象时，可以将方法调用“转发”

• 例如 Circle 类中调用 Coordinate 的 distance() 方法

• 前提是 Coordinate 实现了 __str__() 方法

class Coordinate:
def __str__(self):

return f"<{self.x}, {self.y}>"

c = Coordinate(3, 4)
circle = Circle(c, 5)
print(circle) # 输出：Circle(center=<3, 4>, radius=5)

Class and OOP

n 实现__float__()：支持浮点数转换
• 自定义 __float__() 使对象可被强制转换为浮点数

• 常用于科学计算、与内建库集成、排序等

class Fraction:
def __float__(self):

return self.num / self.denom

f = Fraction(3, 4)
print(float(f)) # 输出：0.75

Class and OOP

n 保持封装一致性：返回对象还是值
• 例如，Fraction类中的reduce() 方法可以有两种设计：

• 返回新的 Fraction 对象（推荐，保留原始对象不变）

• 或直接返回简化值，如整数（不推荐，会打破封装）

• 设计选择建议：

• 如果是表示“对象自身的变化” → 使用 self 修改

• 如果是“返回简化或计算后的新实体” → 返回新的对象

def reduce(self):
g = gcd(self.num, self.denom)
return Fraction(self.num // g, self.denom // g)

Class and OOP

n 完整示例：分数类 Fraction（全功能）
• 支持功能：

• 支持 +, *, float(), print()

• 支持 == 判断

• 实现 reduce() 简化分数

• 分母为1时 __str__() 输出整数形式

Class and OOP

n 完整示例：分数类 Fraction（全功能）

class Fraction:
def __init__(self, n, d):

self.num = n
self.denom = d

def __str__(self):
return str(self.num) if self.denom == 1 else f"{self.num}/{self.denom}"

def __add__(self, other):
top = self.num * other.denom + other.num * self.denom
bot = self.denom * other.denom
return Fraction(top, bot)

def __eq__(self, other):
return self.num * other.denom == self.denom * other.num

def reduce(self):
def gcd(a, b):

while b != 0:
a, b = b, a % b

return a
g = gcd(self.num, self.denom)
return Fraction(self.num // g, self.denom // g)

Class and OOP

n 案例设计：账单金额建模类 Money
• 设计一个 Money 类，支持以下功能：

• 属性：yuan（元），jiao（角），fen（分）

• 方法：加法 __add__，字符串表示 __str__，转换为元金额 __float__

Class and OOP

n 案例设计：账单金额建模类 Money

class Money:
def __init__(self, yuan, jiao, fen):

self.total_fen = yuan * 100 + jiao * 10 + fen

def __add__(self, other):
return Money(0, 0, self.total_fen + other.total_fen)

def __str__(self):
y, remainder = divmod(self.total_fen, 100)
j, f = divmod(remainder, 10)
return f"{y}元{j}⻆{f}分"

def __float__(self):
return self.total_fen / 100

m1 = Money(3, 5, 6)
m2 = Money(2, 3, 4)
print(m1 + m2) # 输出：5元9⻆0分
print(float(m1 + m2)) # 输出：5.9

Class and OOP

n 抽象建模：数据结构的最小设计原则
• 在设计类时，需思考：

• 最少需要哪些属性来表达这个对象

• 哪些方法是与该对象强关联的

• 最小设计的好处：

• 降低耦合，提高重用

• 更容易维护和扩展

class Fraction:
def __init__(self, num, denom=1):

self.num = num # 分⼦
self.denom = denom # 分⺟

Class and OOP

n 类的可拓展性与模块间协同设计
• 现实场景：多个类之间必须协同工作，例如：

• User 类 与 Order 类

• Book 类 与 Library 类

• 设计思路：尽量通过传入对象，而不是仅传原始数据
class User:

def __init__(self, name):
self.name = name
self.orders = []

def place_order(self, order):
self.orders.append(order)

class Order:
def __init__(self, item, price):

self.item = item
self.price = price

u = User("Alice")
o = Order("Python书籍", 88)
u.place_order(o)

Class and OOP

n 继承中的方法重载与方法复用
• 父类方法可被子类重写（override），也可复用（通过 super()）

• 使用 super() 可以调用父类中被重写的方法

• 继承结构设计与功能差异处理

class Employee:
def __init__(self, name):

self.name = name
def get_salary(self):

return 3000

class Engineer(Employee):
def get_salary(self):

return super().get_salary() + 2000

Class and OOP

n 练习：构建一组有继承关系的类
• 设计一个交通工具体系，包括：

• 父类：Vehicle，具有属性speed和方法sound()

• 子类：Car, Bike, Plane，分别重写sound()方法

class Vehicle:
 def __init__(self, speed):
 self.speed = speed
 def sound(self):
 return "⼀般声⾳"

class Car(Vehicle):
def sound(self):

return "轰轰"

class Bike(Vehicle):
def sound(self):

return "铃铃"

class Plane(Vehicle):
def sound(self):

return "嗡嗡"

vehicles = [Car(120), Bike(30), Plane(600)]
for v in vehicles:

print(v.sound())

Class and OOP

n 拓展设计：抽象基类（面向多态的统一接口）
• 当你希望多个子类都必须实现某一组方法，可用“接口类”或“抽象基类”

• Python中可以使用 abc 模块中的 ABC 与 @abstractmethod：

• 优势：

• 明确每个子类必须实现的核心方法

• 保证接口一致，便于统一处理

from abc import ABC, abstractmethod

class Shape(ABC):
@abstractmethod
def area(self):

pass

class Circle(Shape):
def __init__(self, r):

self.r = r
def area(self):

return 3.14 * self.r * self.r

Class and OOP

n 实战案例：学生与课程管理系统（支持运算）
• 目标建模：

• 每个学生（Student）可选多门课程（Course）

• 每门课程有学分与成绩

• 支持计算 GPA、课程总学分等

Class and OOP

n 实战案例：学生与课程管理系统（支持运算）

class Course:
def __init__(self, name, credit, score):

self.name = name
self.credit = credit
self.score = score

def __float__(self):
return self.score

Class and OOP

n 实战案例：学生与课程管理系统（支持运算）

class Student:
def __init__(self, name):

self.name = name
self.courses = []

def add_course(self, course):
self.courses.append(course)

def gpa(self):
total = sum(c.credit * c.score for c in self.courses)
total_credit = sum(c.credit for c in self.courses)
return total / total_credit

Class and OOP

n 实战案例：学生与课程管理系统（支持运算）

s = Student("小明")
s.add_course(Course("数学", 3, 90))
s.add_course(Course("英语", 2, 80))
print(s.gpa()) # 输出：86.0

Class and OOP

n 实战案例：学生与课程管理系统（支持运算）
• 目录结构推荐：

/school/

├── __init__.py

├── student.py # Student类

 ├── course.py # Course类

 └── main.py # 业务逻辑/测试代码

• 使用方式：

from student import Student

from course import Course

• 每个类职责清晰、便于维护

• 有利于单元测试与团队协作

Class and OOP

n总结
• 类和对象的核心概念

• 构造函数、属性、方法

• 封装、继承、重写与多态

• 实战设计类、组织模块、真实建模案例

• 深入理解了 Python 类中的特殊方法（Dunder Methods）

• 学习了如何使自定义类像内建类型一样自然地工作

• 掌握了类的组合设计、继承重载、多态性运用

• 构建了多个面向真实问题的类结构示例

Reading and QA Time

See you next week !

